ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 4 of 50
Up
УЖМБС 2021, 6(3): 37–44
https://doi.org/10.26693/jmbs06.03.037
Medicine. Reviews

Pharmacological Properties of Zinc Drugs

Zaychenko G. V., Gorchakova N. A., Shumeiko O. V., Klymenko O. V., Doroshenko G. I.
Abstract

The review represents data about biochemical and physiological zinc properties, its pharmacological influence. Among the trace elements, zinc is one of the most used elements in biology and medicine. Zinc preserves molecular integration, influences the growth and division of cells, is included in some enzymes. Metallothioneins bind zinc with high affinity and serve as intracellular zinc reservoir. They may release free intracellular zinc when needed and mediate physiological zinc role, maintain zinc homeostasis in brain synaptic activity. Metallothioneins are strong radical scavengers that is why zinc plays the main role in oxidative stress. It is intracellular regulator, which influences apoptosis, osteogenesis, keratogenesis, provides intracellular support to proteins during molecular integration. It is a structural component in nucleonic acids and gene regulator proteins. Zinc deficiency has been detected in neurological and psychic diseases. Zinc supplement was effective in patients with stroke and brain injury. Zinc has a positive impact on memory and reduces hyperactivity in children. Zinc is involved in signals neurotransmission. Its deficiency in brain is connected with Alzheimer`s disease, depression, schizophrenia that is why it is used for the treatment of these diseases. Vitamin C is the zinc synergist in the treatment of neurological and psychic diseases as it has antioxidant properties, takes place in detoxication. Zinc plays the important role in autistic disorders in children and is included in the pharmacotherapy of this status. Zinc deficiency leads to liver diseases, hepatitis, liver cirrhosis and gastrointestinal disturbances such as appetite loss, diarrhea, and anorexia. In chronic liver diseases, zinc corrects amino acids disbalance, capacity to synthesize albumin, metabolize ammonium. It was shown that zinc as a heavy metal has antimicrobial action in diarrheas, cholera and other gastrointestinal diseases. It was detected that zinc has antiviral effects in herpes diseases and diseases of upper respiratory ways. Conclusion. Zinc deficiency is connected with some autoimmune diseases such as asthma, eczema and other dermatological diseases. The supply of human organism with zinc and vitamins A, C, D and E is a promising approach because it is a cofactor of 118 proteins aimed at antiviral protection of the human body including interferon-1-dependent proteins against coronavirus. It was shown that zinc helps to inhibit «cytokine storm» characteristic of COVID-19, reduces chronic systemic inflammation and compensates for comorbid pathologies of cardiovascular system in patients with COVID-19. Zinc may influence other systems such as reproductive function, pregnancy, fetus, testosterone synthesis

Keywords: zinc, zinc deficiency, organoprotection; neuroprotection, neurotropic, immunologic, anti-inflammatory, antimicrobial, antivirus properties

Full text: PDF (Ukr) 336K

References
  1. Chekman IS, Ulberg ZR, Rudenko AD, Marushko YuV, Gruzina TG, Reznichenko AS, ta in. Tsynk i nanotsynk: vlastyvosti, zastosuvannya u klinichniy praktytsi [Zinc and nano zinc: properties, application in clinical practice]. Ukrayinskyi medychnyi chasopys. 2013; 3-4(2): 47-53. [Ukrainian]
  2. Danchin A. Zinc, an unexpected integrator or metabolism? Microbiol Biotechnology. 2020; 13(4): 895-8. PMid: 32153121. PMCid: PMC7264881. https://doi.org/10.1111/1751-7915.13549
  3. Garmaza YuM, Slobozhanina EI. Essentsialnost i toksichnost tsinka. Biofizicheskie aspekty [Essancence and zinc toxicity. Biophysical aspects]. Biofizika. 2014; 59(2): 322-33. [Russian]
  4. Garmaza YuM, Tomashevskiy AV, Slobozhanina EI. Metallotioneiny mlekopitayushchikh – struktura i biokhimicheskaya rol [Metallotionins of mammals - Structure and biochemical role]. Izvestiya Natsionalnoy akademii nauk Belorussii. Seriya biologicheskikh nauk. 2016; 1: 107-16. [Russian]
  5. Kumura T, Kambe T. The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. International Journal of Molecular Sciences. 2016; 17(3): 336-9. PMid: 26959009. PMCid: PMC4813198. https://doi.org/10.3390/ijms17030336
  6. Krezel A, Maret W. The biological, inorganic chemistry of zinc ions. Arch Biochem Biophys. 2016; 611:3-19. PMid: 27117234. PMCid: PMC5120989. https://doi.org/10.1016/j.abb.2016.04.010
  7. Haase H, Rink L. Zinc signals and immune function. Biofactors. 2014; 40(1): 27-40. PMid: 23804522. https://doi.org/10.1002/biof.1114
  8. Fukada T, Kanbe T, Eds. Zinc signal in brain function. In: Zinc signals in cellular functions and disorders. Tokyo: Springer Japan; 2014. p. 161-175. PMid: 24102664. https://doi.org/10.1007/978-4-431-55114-0_8
  9. Petkovic V, Miletta MC, Eblé A, Iliev DI, Binder G, Flück CE, et al. Effect of zinc binding residues in growth hormone (GH) and altered b intracellular content on regulated GH secretion. Endocrinology. 2013; 154: 4215-25. PMid: 23970781. https://doi.org/10.1210/en.2013-1089
  10. Franz MC, Anderle P, Bürzle M, Suzuki Y, Freeman MR, Hediger MA, et al. Zinc transporters in prostate cancer. Mol aspects Med. 2013; 34: 735-74. PMid: 23506906. PMCid: PMC4046638. https://doi.org/10.1016/j.mam.2012.11.007
  11. Skolny AF, Skalnaya MG, Grabeklis AR, Skalnaya AA, Tinkov AA. Zinc deficiency as a mediator of toxic effects of alcohol abuse. Eur J Nutr. 2018; 57(7): 2313-22. PMid: 29177978. https://doi.org/10.1007/s00394-017-1584-y
  12. Teriv PS, Shkurupiy DA. Obmin tsynku, regulyatsiya antyoksydantnogo zakhystu ta yikh korektsiya u khvorykh z gostroyu tserebralnoyu nedostatnistyu [Exchange of zinc, regulation of antioxidant protection and their correction in patients with acute cerebral insufficiency]. Bil, anesteziya ta intensyvna terapiya. 2019; 2: 141-7. [Ukrainian]
  13. Turchyna SI. Tsynk ta somatostatevyi rozvytok pidlitkiv [Zinc and Somatostive Development of Adolescents]. Mizhnarodnyi endokrynologichnyi zhurnal. 2017; 13(2): 49-53. [Ukrainian]
  14. Badzhinyan SA. Antioksidantnaya terapiya-zashchita mozga ot svobodnykh radikalov [Antioxidant therapy-protection of the brain from free radicals]. Meditsinskaya nauka Armenii NANRA. 2017; 57(1): 35-44. [Russian]
  15. Hughes CG, Brummel NE, Girard TD, Graves AJ, Ely EW, Pandaripande PP. Change in endothelial vascular reactivity and acute brain dysfunction during critical illness. Br J Anestheol. 2015; 115(5): 794-5. PMid: 26475809. PMCid: PMC4608489. https://doi.org/10.1093/bja/aev332
  16. Gromova OA, Torshin IYu, Pronin AV, Kilchevskiy MA. Sinergidnoe primenenie tsinka i vitamina C dlya podderzhki pamyati, vnimaniya i snizheniya riska razvitiya zabolevaniy nervnoy sistemy [Synergide application of zinc and vitamin C to support memory, attention and reducing the risk of developing diseases of the nervous system]. Zhurnal nevrologii i psikhiatrii im SS Korsakova. 2017; 117(7): 112-9. [Russian]. PMid: 28514338. https://doi.org/10.17116/jnevro20171171275-84
  17. Sheybakh LG. Rol, znachenie tsinka v perinatologii [Role, zinc value in perinatology]. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta. 2015; 2: 30-36. [Russian]
  18. Mackenzie GG, Salvador GA, Romero C, Keen CL, Oleiza PL. A deficit in zinc availability can cause alterations in tubulin thiol redox status in cultured neurons and in the developing fetal rat brain. Free Radic Biol Med. 2011; 51(2): 480-9. PMid: 21600978. PMCid: PMC3506427. https://doi.org/10.1016/j.freeradbiomed.2011.04.028
  19. Hegin S, Fukada T. Zinc transporters and signaling in physiology and pathology. Arch Biochem Biophys. 2016; 5: 1-8.
  20. Presnyakova MV, Kostin OV, Albitskaya ZhV. Biologicheskaya rol tsinka i ego znachimost v patogeneze rasstroystv auticheskogo spektra [The biological role of zinc and its significance in the pathogenesis of the autistic spectrum disorders]. Spetsialnaya i klinicheskaya psikhiatriya. 2019; 29(3): 63-70. [Russian]
  21. Mlyniec K, Singewald KN, Holst B, Novak G. GPR39 Zn2+-sensing receptor: A new target in antidepressant development? Affect Dis. 2015; 174: 89-100. PMid: 25490458. https://doi.org/10.1016/j.jad.2014.11.033
  22. Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe, K, et al. Plasma nutrient status of patients with alzheimer's disease: Systematic review and meta-analysis. Alzheimer's Dement. 2014; 10: 485-502. PMid: 24144963. https://doi.org/10.1016/j.jalz.2013.05.1771
  23. Galston BA, Skalir EP, Clarin WJ. Binding transition metals in store proteins. Sci. China life. 2016; 50: 792-802. PMid: 27430886. PMCid: PMC5123432. https://doi.org/10.1007/s11427-016-5088-4
  24. Macedoni-Lukšič M, Gosar D, Bjørklund G, Oražem J, Kodrič J, Lešnik-Musek P, et al. Levels of metalsin the blood and specific polymorphismin the urine in childrenwith autism spectrum disorders. Biol Trace Elem Res. 2015; 163(1): 2-10. PMid: 25234471. https://doi.org/10.1007/s12011-014-0121-6
  25. Shtykova ON, Legonkova TN. Stepina TG, Voytenkova OV, Sofronov VV, Stefanov MM. Tsinkdefitsitnye deti: dolgovremennye posledstviya i perspektivy zdorovya. Pishchevaya neperenosimost u detey [Zinc-defective children: long-term consequences and health prospects. Food intolerance in children]. Sovremennye aspekty diagnostiki, lecheniya, profilaktiki i dietoterapii. 2018: 176-183. [Russian]
  26. Sheybak VM. Transportnaya rol syvorotochnogo albumina, tsink i zhirnye kysloty [Transport role of serum albumin, zinc and fatty acids]. Vestnik VGMTs. 2015; 14(2): 16-22. [Russian]. https://doi.org/10.5771/0947-9856-2016-1-14
  27. Kruis W, Phuong NG. Iron deficiency, zinc, magnesium vitamin de ciences in Crohn disease. Substitute or not. Dig Dis. 2016; 34: 105-13. PMid: 26982488. https://doi.org/10.1159/000443012
  28. Shield TKD, Parry C, Rehim G. Chronic diseases and conditions related to alcohol use. Alcohol Res. 2014; 35: 155-60.
  29. Marger L, Schubert C, Bernard D. Zinc as undfrapresiated modulatory factor of brain function. Biochem Pharmacol. 2014; 91: 426-35. PMid: 25130547. https://doi.org/10.1016/j.bcp.2014.08.002
  30. Jansen WJ. Alveolar macrophage dysfunction and chronic alcohol use. Time to think about zinc. 2013; 188: 716-23. PMid: 24032380. PMCid: PMC3826189. https://doi.org/10.1164/rccm.201307-1382ED
  31. Prassad AS. Discovery of human risk deficiency. 50 years later. J Trace element Med Biol. 2012; 26: 66-9. PMid: 22664333. https://doi.org/10.1016/j.jtemb.2012.04.004
  32. Shchelyagina NA. Pitanie beremennykh zhenshchin i programmirovanie zabolevaniy rebenka na raznykh etapakh ontogeneza (teoreticheskie i prakticheskie voprosy) [Food of pregnant women and programming of child diseases at different stages of ontogenesis (theoretical and practical issues)]. Lechenie i profilaktika. 2012; 1: 6-15. [Russian]
  33. Nishito Y, Kambe T. Absorption Mechanisms of Iron, Copper, and Zinc: An Overview. J Nutr Sci Vitaminol (Tokyo). 2018; 64(1): 1-7. PMid: 29491267. https://doi.org/10.3177/jnsv.64.1
  34. Grüngreiff K, Reinhold D, Wedemeyer H. The role of zinc in liver cirrhosis. Ann Hepatol. 2016; 15(1): 7-16. PMid: 26626635. https://doi.org/10.5604/16652681.1184191
  35. Katayama K, Kawaguchi T, Shiraishi K, Ito T, Suzuki K, Koreeda C, et al. The Prevalence and Implication of Zinc Deficiency in Patients With Chronic Liver Disease. J Clin Med Res. 2018; 10(5): 437-44. PMid: 29581807. PMCid: PMC5862092. https://doi.org/10.14740/jocmr3374w
  36. Katayama K, Saito M, Kawaguchi T, Endo R, Sawara K, Nishiguchi S, et al. Effect of zinc on liver cirrhosis with hyperammonemia: a preliminary randomized, placebo-controlled double-blind trial. Nutrition. 2014; 3: 1404-14. PMid: 25280421. https://doi.org/10.1016/j.nut.2014.04.018
  37. Oteiza PI. Zinc and the modulation of redox homeostasis. Free Radic Biol Med. 2012; 53(9): 1748-59. PMid: 22960578. PMCid: PMC3506432. https://doi.org/10.1016/j.freeradbiomed.2012.08.568
  38. Eide DJ. The oxidative stress of zinc deficiency. Metallomics. 2011; 3(11): 1124-9. PMid: 21789324. https://doi.org/10.1039/c1mt00064k
  39. Bonaventura P, Benedetti G, Albarиde F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015; 14(4): 277-85. PMid: 25462582. https://doi.org/10.1016/j.autrev.2014.11.008
  40. Ghaffari J, Khalilian A, Salehifar E, Khorasani E, Rezaii MS. Effect of zinc supplementation in children with asthma: a randomized, placebo-controlled trial in northern Islamic Republic of Iran. East Mediterr Health J. 2014; 20(6): 391-6. PMid: 24960516. https://doi.org/10.26719/2014.20.6.391
  41. Hemilд H. Zinc lozenges may shorten the duration of colds: a systematic review. Open Respir Med J. 2011; 5: 51-8. PMid: 21769305. PMCid: PMC3136969. https://doi.org/10.2174/1874306401105010051
  42. Kochergina NG, Petrunin DD. Sovremennyy vzglyad na problemu vybora lekarstvennoy formy terapii naruzhnoy terapii [Modern look at the problem of choosing the medicinal form of external therapy therapy]. Klinicheskaya dermatologiya i venerologiya. 2011; 6: 84-94. [Russian]
  43. Nasrulaeva KhN, Magomedova RG, Magomedovpa NM, Alkhadov RT, Magomedova ZSh, Labianova ON. Preparat tsinkteril-teva v kompleksnoy terapii dermatozov [The drug is citridil-teva in complex therapy of dermatosis]. Sbornik nauchnykh po itogam raboty «Nauka i innovatsii-sovremennaya kontseptsiya Mezhdunarodnogo nauchnogo foruma. M: Interkhim; 2019. p. 42-44. [Russian]
  44. Chekman IS, Ulberg ZR, Malanchuk VO, Gorchakova NO, Zupanets IA. Nanonauka, nanobiologiya, nanofarmakologiya [Nanoscience, Nanobіologist, Nanofarmabologiya]. K: Poligraf plyus; 2012. 328 s. [Ukrainian]
  45. Javanbakht M, Daneshpazhooh M, Chams-Davatchi C, Eshraghian M, Zarei M, Chamari MD. Serum selenium, zinc, and copper in early-diagnosed patients with pemphigus vulgaris. Iran J Public Health. 2012; 41(5): 105-9.
  46. Bresee JS, Marcus R, Venezia RA, Keene WE, Morse D, Thanassi M, et al. The etiology of severe acute gastroenteritis among adults visiting emergency departments in the United States. J Infect Dis. 2012; 205(9): 1374-81. PMid: 22454468. https://doi.org/10.1093/infdis/jis206
  47. Bruzzese E, Lo Vecchio A, Guarino A. Hospital management of children with acute gastroenteritis. Curr Opin Gastroenterol. 2013; 29(1): 23-30. PMid: 23196854. https://doi.org/10.1097/MOG.0b013e32835a352f
  48. Kim ET, Roche KL, Kulej K, Spruce LA, Seeholzer SH, Coen DM, et al. SAMHD1 Modulates Early Steps during Human Cytomegalovirus Infection by Limiting NF-κB Activation. Cell Rep. 2019; 28(2): 434-48. PMid: 31291579. PMCid: PMC6662646. https://doi.org/10.1016/j.celrep.2019.06.027
  49. Yalçın SS, Engür-Karasimav D, Alehan D, Yurdakök K, Ozkutlu S, Coєkun T. Zinc supplementation and TNF-α levels in vaccinated cardiac patients. J Trace Elem Med Biol. 2011; 25(2): 85-90. PMid: 21514808. https://doi.org/10.1016/j.jtemb.2011.03.002
  50. Gromova OO, Torshin IYu. Vazhnost tsinka dlya podderzhaniya aktivnosti belkov vrozhdennogo protivovirusnogo immuniteta: analiz publikatsiy, posvyashchennykh COVID-19 [The importance of zinc to maintain the activity of proteins of congenital antiviral immunity: analysis of publications dedicated to COVID-19]. Profilakticheskaya meditsina. 2020; 8(3): 151-39. [Russian]
  51. Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, et al. Drug targets for corona virus: A systematic review. Indian J Pharmacol. 2020; 52(1): 56-65. PMid: 32201449. PMCid: PMC7074424. https://doi.org/10.4103/ijp.IJP_115_20
  52. Redkin R, Orlovetskaya N, Dankevich O. Tsink-dieta molodosti [Zinc diet youth]. Fapmatsevt Praktik. 2017; 10: 46-9. [Russian]
  53. Sobowale OA, Parry-Jones AR, Smith CJ, Tyrrell PJ, Rothwell NJ, Allan SM. Interleukin-1 in Stroke: From Bench to Bedside. Stroke. 2016; 47(8): 2160-7. PMid: 26931154. https://doi.org/10.1161/STROKEAHA.115.010001
  54. Wei Z, Burwinkel M, Palissa C, Ephraim E, Schmidt MF. Antiviral activity of zinc salts against transmissible gastroenteritis virus in vitro. Vet Microbiol. 2012; 160(3-4): 468-72. PMid: 22818659. PMCid: PMC7117232. https://doi.org/10.1016/j.vetmic.2012.06.019
  55. Choi S, Liu X, Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin. 2018; 39(7): 1120-1132. PMid: 29926844. PMCid: PMC6289396. https://doi.org/10.1038/aps.2018.25
  56. Shikh EB. Rol mikronutrientov v sokhranenii zdorovya materi, profilaktik patologicheskikh sostoyaniy novorozhdennykh [The role of micronutrients in preserving the health of the mother, the prevention of pathological states of newborns]. Ros Vestnik akushera-ginekologa. 2014; 14(2): 37-42. [Russian]