ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 48 of 50
Up
УЖМБС 2021, 6(3): 360–365
https://doi.org/10.26693/jmbs06.03.360
Biology

Prooxidant-Antioxidant Balance in the Heart of Rats with Different Behavioral Activities under the Conditions of Light Exposition

Chebotar L. D., Laricheva E. N., Gilmutdinova M. Sh.
Abstract

The purpose of the article. The article shows that the effect of round-the-clock lighting causes changes in the processes of lipid peroxidation and antioxidant activity in rats, and depends on their behavioural activity. The effects of lighting on the processes of oxidative metabolism of varying degrees in the heart of resistant and unstable to emotional stress rats. Materials and methods. Investigations were carried out on 32 mature Wistar rats, divided into four groups: group 1 – animals resistant to emotional stress (intact); group 2 – intact animals unstable to emotional stress; group 3 – experimental animals resistant to emotional stress (30-day light exposure (1000 lux)); group 4 – experimental animals, unstable to emotional stress (30-day light exposure (1000 lux)). When assessing the effect of light on the state of the organism, the most important integral indicator is the behavior of animals. Therefore, during the experiment we used the observation of behavioral reactions in the test “open field”. Based on the characteristics of the behavior of animals in the “open field” rats were divided into groups resistant and unstable to emotional stress. To assess lipid peroxidation in the heart homogenate, the concentration of TBA-active products, the concentration of diene, oxidiene and triene conjugates were determined. Antioxidant processes were assessed by the increase in the concentration of TBA- active products during 1.5-hour incubation in an iron-ascorbate buffer solution, as well as by the activity of superoxide dismutase and catalase. Results and discussion. Prooxidant activity was characterized by an increase in the concentration of TBA-reactive substances in animals resistant to emotional stress. The concentration of TBA-reactive substances after 1.5-hour incubation increased in both experimental groups. Changes in the antioxidant status were illustrated by an increase in superoxide dismutase activity in the group of stress-unstable rats, whereas catalase activity increased in both experimental groups. In addition, in the group of animals resistant to emotional stress, a significant decrease in the resources of α-tocopherol and β-carotene was revealed. Conclusion. The long-term light exposure promotes the formation of end products of peroxidation in the heart of rats resistant to emotional stress and causes a decrease in antioxidant potential, regardless of behavioural activity. Antioxidant activity in the heart of emotionally stress-resistant rats is realized through both the enzyme and non-enzyme links of the antioxidant defence, while the main role in the heart of emotionally stress-resistant rats is played by superoxide dismutase activity

Keywords: pineal gland, heart, behavioural response, antioxidant activity, oxidative metabolism

Full text: PDF (Ukr) 317K

References
  1. Meerson FЗ. Patogenez i preduprezhdenie stressornyh i ishemicheskih povrezhdenij serdca [Pathogenesis and prevention of stress and ischemic heart damage]. M: Medicina, 1984. 269 р. [Russian]
  2. Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A: A review of melatonin, its receptors and drugs. Eurasian J Med 2016; 48: 135–141. https://doi.org/10.5152/eurasianjmed.2015.0267
  3. Amaral FGD, Cipolla-Neto J. A brief review about melatonin, a pineal hormone. Arch Endocrinol Metab. 2018; 62(4): 472-479. PMID: 30304113. https://doi.org/10.20945/2359-3997000000066
  4. Tan DX, Xu B, Zhou X, Reiter RJ. Pineal Calcification, Melatonin Production, Aging, Associated Health Consequences and Rejuvenation of the Pineal Gland. Molecules. 2018 Jan 31; 23(2): 301. PMID: 29385085. https://doi.org/10.3390/molecules23020301
  5. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016; 61(3): 253–278. https://doi.org/10.1111/jpi.12360
  6. Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, et al. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015; 59: 403–419. https://doi.org/10.1111/jpi.12267
  7. Claustrat B, Leston J. Melatonin: Physiological effects in humans. Neurochirurgie 2015; 61(2-3): 77-84. https://doi.org/10.1016/j.neuchi.2015.03.002
  8. Li Y, Li S, Zhou Y, Meng X, Zhang J, Xu DP, Li HB. Melatonin for the prevention and treatment of cancer. Oncotarget. 2017; 8: 39896–39921. https://doi.org/10.18632/oncotarget.16379
  9. Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, et al. Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int J Mol Sci. 2017; 18: 843. https://doi.org/10.3390/ijms18040843
  10. Ortiz GG, Moráles-Sánchez EW, Pacheco-Moisés F.P, Jiménez-Gil FJ, Macías-Islas MA, Mireles-Ramírez MA, et al. Efecto de la administración de melatonina sobre la actividad de la ciclooxigenasa-2, la concentración sérica de metabolitos del óxido nítrico, los lipoperóxidos y la actividad de la glutatión peroxidasa en pacientes con enfermedad de Parkinson [Effect of melatonin administration on cyclooxygenase-2 activity, serum levels of nitric oxide metabolites, lipoperoxides and glutathione peroxidase activity in patients with Parkinson’s disease]. Gaceta medica de Mexico. 2017; 153(Suppl 2): S72-S81. https://doi.org/10.24875/GMM.M17000008
  11. Arushanian EB, Beĭer EV. Uchastie jepifiza v antistressornom dejstvii adaptogennyh sredstv. [Participation of pineal gland in antistressor activity of adaptogenic drugs]. Eksp Klin Farmakol. 2015; 78(1): 9-12. [Russian] https://doi.org/10.30906/0869-2092-2015-78-1-9-12
  12. Lisa A Ostrin Ocular and systemic melatonin and the influence of lightexposure Clin Exp Optom 2019; 102: 99–108. https://doi.org/10.1111/cxo.12824
  13. Zhang H, Geng X, Li Z, Li Y, Xu K, Wu H, et al. Paeonol at Certain Doses Alleviates Aggressive and Anxiety-Like Behaviours in Two Premenstrual Dysphoric Disorder Rat Models. Front Psychiatry. 2020; 11: 295. https://doi.org/10.3389/fpsyt.2020.00295
  14. Labunec' ІF. Osoblivostі povedіnki u mishej rіznih lіnіj і statі z modellju parkіnsonіzmu [Behavioral features in mice of different lines and sex with a model of parkinsonism]. Fіzіol zhurn. 2020; 66(1): 18-24. [Ukrainian]
  15. Berkalo LV, Bobovych OV, Bobrova NO. Metody klinichnykh ta eksperymentalnykh doslidzhen v medytsyni [Methods of clinical and experimental research in medicine]. Poltava; 2003. 320 р. [Ukrainian]
  16. Stalnaya YD. Metod opredelenyya dyenovoy konyugatsyy nenasyshchennykh vysshykh zhyrnykh kyslot [Method for determination of diene conjugation of unsaturated higher fatty acids]. In: Orekhovych VN. Sovremennye metody v byokhymyy [Modern methods in biochemistry]. M: Medytsyna; 1977. p. 63-64 [Russian]
  17. Lebedev A, Afanasev SA, Alekseeva ED. Vlyyanye vozrasta y yshemyy na uroven lypoperekysey y lypydorastvorymykh antyoksydantov v serdtse cheloveka [Effect of age and ischemia on the level of lipid peroxides and lipid-soluble antioxidants in the human heart]. Byulleten eksperymentalnoy byologyy y medytsyny. 1995; 6: 584-586 [Russian]
  18. Korolyuk MA, Yvanova LY, Mayorova NT, Tokarev KE. Metod opredelenyya aktyvnosty katalazy [Method for determination of catalase activity]. Laboratornoe delo. 1988; 1: 16-18 [Russian]
  19. Gil'mutdinova MSh, Chebotar LD, Larycheva OM. Stan okysnjuval'nogo metabolizmu v tkanynah sercja ta skeletnyh m'jaziv shhuriv za umovy svitlovoi' depryvacii' [The state of oxidative metabolism in the tissues of the heart and skeletal muscle of rats under light deprivation]. Ukrains'kyj zhurnal medycyny, biologii' ta sportu. 2020; 5(27): 319-323. [Ukrainian]
  20. Gil'mutdinova MSh, Cherno VS, Kosharnyj VV. Riven' pervynnyh produktiv peroksydnogo okysnennja lipidiv za umov riznomanitnoi' funkcional'noi' aktyvnosti skeletnyh m’jaziv v kombinacii' zi zminamy fotoperiodu [The level of primary products of lipid peroxidation under conditions of various functional activity of skeletal muscles in combination with changes in the photoperiod]. Svit medycyny ta biologii'. 2018; 3(65): 215-218. [Ukrainian]
  21. Cebrzhyns'kyj OI, Velyka IO, Gavtyk AS. Vplyv kationu itriju na prooksydantno-antyoksydantnu systemu v eksperymenti [The effect of yttrium cation on the prooxidant-antioxidant system in the experiment]. Naukovyj visnyk Mykolai'vs'kogo derzhavnogo universytetu imeni VO Suhomlyns'kogo. Serija «Biologichni nauky». 2014; 6.2 (107): 85-88. [Ukrainian]
  22. Kopanycja OM. Aktyvnist' superoksydysmutazy i katalazy u stinci tonkoi' kyshky, serci i pechinci shhuriv pry eksperymentalnomu zastosuvanni karaginanu [The activity of superoxide dismutase and catalase in the wall of the small intestine, heart and liver of rats in the experimental use of carrageenan]. Zdobutky klinichnoi' i eksperymental'noi' medycyny. 2017; 4: 57-61. [Ukrainian]
  23. Nandi A, Yan LJ, Jana CK, Das N. Role of Catalase in oxidative stress-and age-associated degenerative diseases. Oxid Med Cell Longev. 2019; 2019: 9613090. https://doi.org/10.1155/2019/9613090
  24. Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative Stress in Aging Human Skin. Biomolecules. 2015; 5(2): 545-589. https://doi.org/10.3390/biom5020545