ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 28 of 50
УЖМБС 2021, 6(1): 184–193

Antibacterial Activity of Chlorhexidine Bigluconate in Relation to Biofilm Monocultures

Chistyakova G. G., Skorokhod G. A., Pohodenko-Chudakova I. O.

On the background of a high percentage of caries incidence, the prevalence of its complications is increasing – pulpitis, apical periodontitis. Teeth with complicated caries can cause odontogenic inflammatory processes in the maxillofacial region. Being foci of chronic infection and intoxication, they have an adverse effect on the body as a whole. In connection with the above, it is obvious that determining the optimal concentration of chlorhexidine bigluconate and exposure to the dentin of the crown part of the tooth in case of carious lesion of the latter is currently very important. The purpose of the study was to evaluate the antimicrobial activity of chlorhexidine (by suspension and contact method) in various concentrations in relation to monocultures of biofilm formed on tooth sections and in U-shaped 96-well plastic plates. Material and methods. In this work, one of the most relevant pathogens for modern medicine was Staphylococcus aureus, which was one of the most powerful pathogens that form biofilms, was used as a model. The antimicrobial activity of chlorhexidine bigluconate was evaluated on S. aureus and E. coli biofilm cultures formed on dental samples and in polystyrene plastic tablets. Antimicrobial activity was evaluated by the reduction factor was determined by the difference in the number of decimal logarithms of CFU/ml in the experiment compared to the control. The obtained data was subjected to statistical processing. Results and discussion. The study revealed that 2.0 % solution of chlorhexidine bigluconate had a high level of antibacterial activity against tablet biofilm cultures of S. aureus and E. coli. When it was exposed to S. aureus and E. coli tablet biofilm cultures with exposures of 30 and 60 seconds, statistically significant differences were found (p=0.02). Secondly, statistically significant differences in the effect of sensitivity of single-species biofilm cultures of dental samples to the effect of antiseptic at the specified concentration were determined (p=0.007). At the same time, the level of antibacterial activity of 2.0 % chlorhexidine bigluconate solution in respect of tablet biofilm cultures of S. aureus and E. coli was significantly higher than in biofilm cultures of S. aureus and E. coli of dental samples (p<0.05). Conclusion. The obtained results give grounds for using them in clinical practice in order to improve the effectiveness of caries treatment which will help reduce the number of complications and on the one hand, corresponds to the main direction of medicine ‒ prevention and on the other hand, increases the level of specialized medical care provided to the population as a whole

Keywords: caries, chlorhexidine bigluconate, antimicrobial activity, biofilms

Full text: PDF (Rus) 349K

  1. Glukhova EA, Mezhevikina GS. Kliniko-laboratornoe obosnovanie jeffektivnosti jendodonticheskogo lechenija [Clinical and laboratory substantiation of efficiency endodontic treatment]. Sci of the Young (Eruditio Juvenium). 2019; 7(2): 294-300. [Russian].
  2. Rôças IN, Alves FRF, Rachid CTCC, Lima KC, Assunção IV, Gomes PN, et al. Microbiome of deep dentinal caries lesions in teeth with symptomatic irreversible pulpitis. PLoS One. 2016; 11(5): e0154653.
  3. Shashmurina VR, Kupreeva IV, Devlikanova LI, Lubinskaya EV, Mishutina OL. Klinicheskij opyt terapii hronicheskogo apikal'nogo periodontita [Clinical experience of chronic apical periodontitis therapy]. Bull of the Smolensk State Med. Academ. 2018; 17(1): 160-6. [Russian]
  4. Bagul R, Chandan S, Sane VD, Patil S, Yadav D. Comparative evaluation of C-reactive protein and WBC count in fascial space infections of odontogenic origin. J Maxillofac Oral Surg. 2017; 16(2): 238-42.
  5. Zotova AS, Konnov SV, Mikailova VA. Antispetiki dlja obrabotki kornevyh kanalov, ispol'zuemye pri pul'pitah i periodontitah: raznovidnosti i osobennosti [Antispetics for root canal treatment used for pulpitis and periodontitis: varieties and features]. Bull of Med Internet Conf. 2016; 6(6): 1099-100. [Russian]
  6. Mashima I, Nakazawa F. Interaction between Streptococcus spp. and Veillonella tobetsuensis in the early stages of oral biofilm formation. J Bacteriol. 2015; 197(13): 2104-11.
  7. Kabanova AA, Pohodenko-Chudakova IO, Plotnikov PV. Sposoby vozdejstvija na mikrobnye bioplenki. Sovremennoe sostojanie voprosa [Effects on microbial biofilms. Current status of the issue]. Bull of Probl in Biology and Med. 2015; 2(125): 20-4. [Russian]
  8. Tchebotor IV, Mayanskiy AN, Mayanskiy NA. Matriks mikrobnyh bioplenok [Matrix of microbial Biofilms]. Clin Microbiol and Antimicrob Chempther. 2016; 18(1): 9-19. [Russian]
  9. Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018; 9(1): 522-54.
  10. Borisova MI, Lazakovich DN, Sidorova NA, Savushkin AI. Bioplenkoobrazujushhaja aktivnost' i fenomen persistencii mikroorganizmov [Biofilm-forming activity and the phenomenon of microbial persistence]. J of Biomed Technologies. 2015; 2: 28-5.
  11. He J, Hwang G, Liu Y, Gao L, Kilpatrick-Liverman LT, Santarpia P, et al. l-Arginine modifies the exopolysaccharide matrix and thwarts Streptococcus mutans outgrowth within mixed-species oral biofilms. J Bacteriol. 2016; 198(19): 2651-61.
  12. Andreeva SV, Bakhareva LI, Nokhrin DYu, Titova MV, Khaidarshina NE, Burmistrova AL. Chuvstvitel'nost' k antiseptikam bioplenochnyh form Staphylococcus aureus i Pseudomonas aeruginosa, vydelennyh iz ozhogovyh ran [Susceptibility to antiseptic preparetions in biofilm-forming Staphylococcus aureus and Pseudomonas aeruginosa isolated from burn wounds]. Clin Microbiol and Antimicrob Chempther. 2018; 20(3): 249-56. [Russian].
  13. Gabe V, Zeidan M, Kacergius T, Bratchikov M, Falah M, Rayan A. Lauryl gallate activity and Streptococcus mutans: its effects on biofilm formation, acidogenicity and gene expression. Molecules. 2020; 25(16): 3685.
  14. Detusheva EV, Rodin VB, Slukin PV, Ershova ON, Aleksandrova IA, Kurdyumova NV, et al. Chuvstvitel'nost' nozokomial'nyh shtammov K. pneumoniae, P. aeruginosa, A. baumannii, P. mirabilis k antiseptiku na osnove hlorgeksidina [Susceptibility of nosocomial K. pneumoniae, P. aeruginosa, A. baumannii, P. mirabilis strains to a chlorhexidine-based antiseptic preparation]. Clin Microbiol and Antimicrob Chempther. 2015; 17(1): 57-6. [Russian]
  15. Dovnar HG, Rzheuski SE. Antimicrobial activity of the gel with chlorhexidine digluconate intended for the treatment of oral candidiasis. Vestnik VGMU. 2017; 16(3): 91-7. [Russian].
  16. Dmitrieva NA, Krechina E.K., Yarigina L.B., Efremova N.V. Sravnitel'noe izuchenie antimikrobnoj aktivnosti preparatov, ispol'zujushhihsja dlja antisepticheskoj obrabotki kornevyh kanalov zubov [Comparative evalution of antimicrobial activity of root canal irrigation agents]. Stomatology. 2013; 92(5): 9-11. [in Russian].
  17. Chandki R., Nikhil V, Kalyan SS. Comparative evaluation of substantivity of two biguanides ‒ 0,2% polyhexanide and 2% chlorhexidine on human dentin. J Conserv Dent. 2020; 23(1): 46–50.
  18. Kvashnina DV, Kovalishena OV. Rasprostranennost' ustojchivosti mikroorganizmov k hlorgeksidinu po dannym sistematicheskogo obzora i analiza regional'nogo monitoringa rezistentnost [Prevalence of microbial resistance to chlorhexidine: a systematic review and analusis of regional monitoring]. Fundament and Clin Med. 2018; 3(1): 63-71. [Russian].
  19. Pogosjan MA. Hlorgeksidin ‒ antiseptik, ne privodjashhij k bakteriorezistentnosti [Chlorhexidine is an antiseptic that does not lead to bacterial resistance]. Bull of Med Internet Conf. 2015; 5(10): 1234-5. [Russian]
  20. Khryanin AA, Knorring GYu. Sovremennye predstavlenija o bioplenkah [Modern concepts of microbial biofilms]. Farmateka. 2020; 27(6): 34-43. [Russian].
  21. Zandona F, Soini HA, Novotny MV, Santiago E, Eckert GJ, Preisser JS, et al. A potential biofilm metabolite signature for caries activity ‒ a pilot clinical study. Metabolomics. 2015; 5(1): 140.
  22. Carev VN. Mikrobiologija, virusologija i immunologija polosti rta: uchebnik [Microbiology, Virology and immunology of the oral cavity: textbook]. M: GEOTAR-Media. 2016; 576. [Russian]
  23. Simonova IR, Golovin SN, Veerkina LM, Bereznyak EA, Titova SV. Metody kul'tivirovanija i izuchenija bakterial'nyh bioplenok [Methods of culturing and studying bacterial biofilms]. Bull of Higher Stud North Caucasus Reg Natural Sci. 2017; 193(1): 73-9. [Russian]
  24. Olefir YuV, Lutseva AI, Gunar OV, Sakhno NG, Grigorieva VE. Jeksperimental'naja ocenka metodov opredelenija antimikrobnoj aktivnosti preparatov hlorfillipta [Experimental evaluation of the methods for determining the antimicrobial activity of chlorophyllipt]. The Bull of the Sci Centre for Expert Evaluation of Med Products. 2015; 4: 47-50. [Russian]
  25. Stroup W.W. Generalized linear mixed models. CRC Press; 2013. 547 p.
  26. Zubov NN, Kuvakin VI. Metody mnogomernogo statisticheskogo analiza dannyh v medicine: uchebnoe posobie [Methods of multidimensional statistical data analysis in medicine: textbook]. SPb: Lithografiya Print; 2017. 348 p. [Russian]
  27. Ippolitov EV, Nikolaeva EN, Tsarev VN. Bioplenka polosti rta ‒ induktory signal'nyh sistem vrozhdennogo immuniteta [Oral biofilm: inductors of congenital immunity signal pathways]. Stomatology. 2017; 96(4): 58-62. [Russian].
  28. Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation and interaction with oral pathogens. Future Microbiol. 2018; 13(8): 915-32.