ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 3 of 61
Up
УЖМБС 2019, 4(5): 33–38
https://doi.org/10.26693/jmbs04.05.033
Medicine. Reviews

Formation of Nephrons Integration in Ontogenesis: Participation of MicroRNA (Literature Review)

Pishak V. P. 1, Ryznychuk M. A. 2, Zamorskii I. I. 2, Khmara T. V. 2
Abstract

The article analyzes current data on the ontogenetic features of the formation of the structural and functional unit of the kidney. The process of formation and differentiation of the nephron rudiments is shown as a display of the phylogenesis of the urinary system and urinary tract. It occurs with the help of metanephrogenic cells accumulation and their subsequent transformation and differentiation. In the process of embryogenesis, the renal corpuscle and the distal tubule are allocated first, and later the proximal one. The laying of the glomeruli of capillaries occurs by intraorgan hemangiogenesis, after extraorgan arterial vessels penetrate into the thickness of the laying of the metanephros and give 1-2 orders of their branches. The structures of the anlage of the vascular and tubular poles of the renal corpuscle are in close proximity. With further formation of the tubular part of the nephron, a loop is formed. The latter is located along the collector renal tubule and drains the corresponding nephron. This section is called the distal renal tubule and the ascending part of the nephron loop. The peculiarity of the anlage and formation of the counterflow system of the kidney is that along each collector renal tubules of the juxtamedullary nephrons, there are loops of Henle of three nephrons of the same population associated with this tubule. The central position in the system is occupied by the combined renal tubule, a more sinuous ascending one adjoins it, and further to the periphery a more straightforward, descending, knee of the loop of Henle. The problems of the anlage and formation of the kidney counterflow system are considered. It is proved that cell proliferation of the fetus depends on daily fluctuations in the concentration of melatonin, a key molecule in adaptation to the day-night biorhythm. The proliferation of epithelial cells increases at night and decreases during the day, reflecting the rhythm of melatonin production. The proliferative activity of bone marrow cells, myeloid and erythroid cells is subject to the circadian rhythm. It is known that microRNAs play an important role in providing rhythms of physiological and biochemical processes in the kidneys and a key role in synchronizing biological processes, because microRNAs, being regulators of the rate of synthesis of cellular proteins, can simulate both the Tcd value and the reactivity of the phase-dependent response of biological clocks to exposure to light. In kidneys, there is a high level of expression of a variety of microRNA species: miR-192, miR0194, miR-122, miR-219, miR-132, which is a subject for further studies. Conclusion. Undoubtedly, microRNAs play an important role in ensuring the rhythms of physiological and biochemical processes in the kidneys and a key role in the synchronization of biological processes.

Keywords: microRNA, embryogenesis, nephron, melatonin

Full text: PDF (Ukr) 209K

References
  1. Ayzman RI. Formirovanie funktsii pochek i vodno-solevogo obmena v ontogeneze. Novyie issledovaniya. 2009; 3(20): 108-20. [Russian]
  2. Bazhenov DV, Vihareva LV, Panteleev SM, Yanin VL, Yaroslavtseva OF. Posledovatelnost differentsirovki kanaltsev nefronov okonchatelnoy pochki cheloveka vo vnutriutrobnom razvitii. Morfologiya. 2011; 140(5): 18-22. [Russian]
  3. Bryuhanov VM, Zvereva AYa. Rol pochki v regulyatsii sutochnyih ritmov organizma. Nefrologiya. 2010; 14(3): 17-31. [Russian]
  4. Galitskiy VA. Gipoteza o mehanizme initsiatsii malyimi RNK metilirovaniya DNK de novo i allelnogo isklyucheniya. Tsitologiya. 2008; 50(4): 277-86. [Russian]
  5. Gubin DG. Molekulyarnyie mehanizmyi tsirkadiannyih ritmov i printsipyi razvitiya desinhronoza. Uspehi fiziol nauk. 2013; 44(4): 65-87. [Russian]
  6. Daminova MA, Safina AI, Satrutdinov MA, Hamzina GA. Morfofuktsionalnyie osobennosti organov mochevoy sistemyi u detey, rodivshihsya nedonoshennyimi i malovesnyimi. Vestnik sovremennoy klinicheskoy meditsinyi. 2013; 6(2): 79-86. [Russian]
  7. Makarova YuA, Kramerov DA. Nekodiruyuschie RNK. Biohimiya. 2007; 72(11): 1427-48. [Russian] https://doi.org/10.1134/S0006297907110016
  8. Muhamedyarov DA. Variantyi organogeneza pri razvitii pervichnoy pochki cheloveka i ptitsyi. Universitetskaya meditsina Urala. 2016; 4(7): 18-21. [Russian]
  9. Natochin YuV. Uroki pediatrii fiziologu i fiziologii pediatru. Pediatr. 2015; 6(3): 4-15. [Russian] https://doi.org/10.17816/PED634-15
  10. Natochin YuV. Problemyi evolyutsionnoy fiziologii vodno-solevogo obmena. L; 1984. 38 s. [Russian]
  11. Panteleev SM, Vihareva LV. Mehanizmyi formirovaniya otdelov kanaltsev nefronov okonchatelnoy pochki cheloveka v embriogeneze s pozitsii printsipa provizornosti. Morfologiya. 2010; 137(4): 150. [Russian]
  12. Panteleev SM, Vihareva LV, Maltseva NG, Ushakov AL, Hamoshina IYu, Yaroslavtseva OF, i dr. Otsenka zakonomernosti formirovaniya kanaltsev zachatka nefrona s pozitsii printsipa provizornosti. Morfologiya. 2011; 140(5): 13-7. [Russian]
  13. Pishak VP, Hozhenko AI, Rohovyi YuIe. Tubulo-interstytsiinyi syndrom. Chernivtsi: Medakademiia, 2002; 221 s. [Ukrainian]
  14. Pronyaev VI. Ob'emnaya model zakladki sosudistogo i kanaltsevogo komponentov osmoreguliruyuschego apparata pochki. Byull eksper biol i med. 1981; HSII(8): 114-6. [Russian]
  15. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, et al. microRNA modulation of circadian-clock period and entrainment. Neuron. 2007; 54(5): 813-29. https://www.ncbi.nlm.nih.gov/pubmed/17553428. https://www.ncbi.nlm.nih.gov/pmc/articles/2590749. https://doi.org/10.1016/j.neuron.2007.05.017
  16. Daković-Bjelaković M, Savić V, Vlajković S, Džopalić T. Development and ultrastructure of glomerular capillaries in human foetus. Srp Arh CelokLek. 2008; 136 Suppl 4: 316-22. https://doi.org/ 10.2298/SARH08S4316D
  17. Drusco A, Croce CM. MicroRNAs and Cancer: A Long Story for Short RNAs. Adv Cancer Res. 2017; 135: 1-24. https://www.ncbi.nlm.nih.gov/pubmed/28882219. https://doi.org/10.1016/bs.acr.2017.06.005
  18. Hawkins GA, Meyers DA, Bleecker ER, Pack AI. Identification of coding polymorphisms in human circadian rhythm genes PER1, PER2, PER3, CLOCK, ARNTL, CRY1, CRY2 and TIMELESS in a multi-ethnic screening panel. DNA Seq. 2008; 19(1): 44-9. https://www.ncbi.nlm.nih.gov/pubmed/17852344. https://doi.org/10.1080/10425170701322197
  19. Kojima S, Shingle DL, Green CB. Post-transcriptional control of circadian rhythms. J Cell Sci. 2011; 124(Pt 3): 311-20. https://www.ncbi.nlm.nih.gov/pubmed/21242310. https://www.ncbi.nlm.nih.gov/pmc/articles/3021995. https://doi.org/10.1242/jcs.065771
  20. Pegorarо M, Tauber E. The role of microRNAs (miRNA) in circadian rhythmicity. J Genet. 2008; 87(5): 505-11. https://www.ncbi.nlm.nih.gov/pubmed/19147939. https://doi.org/10.1007/s12041-008-0073-8
  21. Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O'Neill JS, et al. Circadian orchestration of the hepatic proteome. Curr Biol. 2006; 16(11): 1107-15. https://www.ncbi.nlm.nih.gov/pubmed/16753565. https://doi.org/10.1016/j.cub.2006.04.026
  22. Schena FP, Sallustio F, Serino G. microRNAs in glomerular diseases from pathophysiology to potential treatment target. Clin Sci (Lond). 2015; 128(11): 775-88. https://www.ncbi.nlm.nih.gov/pubmed/25881669. https://doi.org/10.1042/CS20140733
  23. Serón-Ferré M, Torres-Farfán C, Forcelledo ML, Valenzuela GJ. The development of circadian rhythms in the fetus and neonate. Semin Perinatol. 2001; 25(6): 363-70. https://www.ncbi.nlm.nih.gov/pubmed/11778907. https://doi.org/10.1053/sper.2001.29037
  24. Smaaland R, Sothern RB, Laerum OD, Abrahamsen JF. Rhythms in human bone marrow and blood cells. Chronobiol Int. 2002; 19(1): 101-27. https://www.ncbi.nlm.nih.gov/pubmed/11962670. https://doi.org/10.1081/CBI-120002594
  25. Takano K, Kawasaki Y, Imaizumi T, Matsuura H, Nozawa R, Tannji M, et al. Development of glomerular endothelial cells, podocytes and mesangial cells in the humanfetus and infant. Tohoku J Exp Med. 2007; 212(1): 81-90. https://www.ncbi.nlm.nih.gov/pubmed/17464107. https://doi.org/10.1620/tjem.212.81
  26. Thayyil S, Sheik S, Kempley ST, Sinha A. A gestation and postnatal age — based reference chart for assessing renal function in extremely premature infants. J Perinatol. 2008; 28(3): 226-9. https://www.ncbi.nlm.nih.gov/pubmed/18288122. https://doi.org/10.1038/sj.jp.7211905
  27. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007; 318(5858): 1931-24. https://www.ncbi.nlm.nih.gov/pubmed/18048652. https://doi.org/10.1126/science.1149460
  28. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, et al. MicroRNA expression in zebrafish embryonic development. Science. 2005; 309: 310-11. https://doi.org/10.1126/science.1114519