ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 40 of 56
Up
УЖМБС 2018, 3(6): 254–261
https://doi.org/10.26693/jmbs03.06.254
Medicine. Reviews

Ultrasound Evaluation of the State of Paravertebral Muscles in Conditions of Degenerative Diseases of the Spine

Radchenko V. O., Skidanov A. G., Kotulskiy I. V., Vishnyakov A. Ye., Yakovenko S. M., Molozhon A. S.
Abstract

The article deals with the questions of ultrasound evaluation of the state of paravertebral muscles in conditions of degenerative diseases of the spine. It is known that neurological manifestations of degenerative-dystrophic diseases of the spine belong to the most important problems of modern medicine. Degenerative diseases of the spine are found in adults of all age categories. It is realized by a stable high number of patients, not always satisfactory results of conservative and surgical treatment. More than half of the people of working age undergo episodes of sharp back pain during a lifetime. This determines the great medical and social importance of the problem of treatment of degenerative lesions of the spine and the search for risk factors for their occurrence. There is an opinion that coincides with ours that one of such risk factors for the development of degenerative diseases is structural and functional disorders of paravertebral muscles. Despite significant scientific research in this area, questions remain about mechanisms of muscular disorders that lead to degenerative diseases of the spine, the decisions of which, in our opinion, could help in forecasting the results of surgical treatment, as well as in developing an adequate individual recovery protocol conservative pre- and postoperative treatment. At present the number of substantiated non-invasive methods for life-long diagnostics of muscle structure, in particular in the lumbar spine, is not sufficient. Limited possibilities for studying paravertebral soft tissues from living individuals are pushed to find new ways to expand their knowledge in this area. The developed techniques of ultrasound (US) of soft tissues are known in the conditions of norm and pathology. The authors of these developments note that the method is very useful in the differential diagnosis of degenerative-dystrophic diseases, inflammatory processes, traumatic injuries and rarely requires additional research. It is known that changes in the muscles are accompanied by changes in the bone skeleton. Ultrasonographic-study of paravertebral muscles is usually performed in patients with chronic pain in the lumbar spine, sometimes – in the event of fractures of the vertebral bodies. Studying US-characteristics of structural changes in paravertebral muscles depending on age and sex, as well as different nosological variants of the course of osteochondrosis of the lumbar spine, would make it possible to more clearly understand the direction and stage of restoration of the function of affected muscles. Moreover, it will help develop criteria for evaluating the results of treatment for these categories of patients. As a result of the analysis of literary data, it was found out that the study of US parameters could be the key to understanding the nature and depth of the pathological process, which leads to muscle changes, and, accordingly, predict the level of rehabilitation potential of a particular patient. Therefore, further research is needed to better understand this problem.

Keywords: paravertebral muscles, ultrasonography, degenerative diseases of the spine, structural changes in muscles, echogenicity of muscles, ultrasound evaluation

Full text: PDF (Ukr) 242K

References
  1. Kudryavtseva YP, Safonova GD, Berdyugyn KA. Sostoyanye paravertebralnykh myshts pry zabolevanyyakh pozvonochnyka. Sovremennye problemy nauky y obrazovanyya. 2015; 5: 166–9. [Russian]
  2. Podchufarova EV, Razumov DV. Bolevoe povedenye u patsyentov s khronycheskoy bolyu v spyne. Novosty medytsyny y farmatsyy. 2011; 370: 50–5. [Russian]
  3. Vovchenko AYa. Putevodytel po ultrazvukovomu yssledovanyyu v travmatologyy y ortopedyy. Sustavy. K: VBO «Ukraynskyy Dopplerovskyy klub»; 2011. 152 с. [Russian]
  4. Jacobson J. A. Fundamentals of musculoskeletal ultrasound. Philadelphia: Saunders Elsevier; 2007. 346 p.
  5. Ozcakar A, Ток F, De Muynck M, Vanderstraeten G. Musculoskeletal sonography in physical and rehabilitation medicine. J Rehabil Med. 2012; 44(4): 310–8. https://www.ncbi.nlm.nih.gov/pubmed/22402760. https://doi.org/10.2340/16501977-0959.
  6. O’Neill J. Musculoskeletal ultrasound: Anatomy and technique. NY: Springer; 2008. 348 p.
  7. Myronov SP, Eskyn NA, Orletskyy AK, y dr. Ultrazvukovaya dyagnostyka patologyy poperechno-polosatykh myshts. Vestnyk travmatologyy y ortopedyy ym NN Pryorova. 2005; 1: 24–33. [Russian]
  8. Stulyn YD, Musyn RS, Solonskyy DS, y dr. Vozmozhnosty ultrazvukovykh metodov dyagnostyky neotlozhnykh sostoyanyy v nevrology. Zdravookhranenye y medytsynskye tekhnologyy. 2005; 3: 38–40. [Russian]
  9. Myronov SP, Burmakova GM, Saltykova VG, y dr. Dyagnostycheskye vozmozhnosty sonografyy pry poyasnychno-kresttsovykh bolyakh. Vestnyk travmatologyy y ortopedyy ym NN Pryorova. 2003; 1: 24–31. [Russian]
  10. Zubarev AR, Nemenova. NA. Ultrazvukovoe yssledovanye oporno-dvygatelnogo apparata u vzroslykh y detey. M: Yzdatelskyy dom «Vydar»; 2006. 136 s. [Russian]
  11. Kanykyn VYu. Prymenenye ultrazvukovogo yssledovanyya v dyagnostyke travm y degeneratyvno-dystrofycheskykh protsessov krupnykh sustavov. N Novgorod; 2000: 34–6. [Russian]
  12. Saltykova VG, Mytkov VV, Orletskyy AK. Znachenye ultrazvukovogo yssledovanyya sukhozhylno-myshechnogo apparata plechevogo sustava pry ostrykh travmatycheskykh povrezhdenyyakh. Ultrazvukovaya y funktsyonalnaya dyagnostyka. 2003; 2: 97–108. [Russian]
  13. MakNelly Yu. Ultrazvukovoe yssledovanye kostno-myshechnoy systemy: Praktycheskoe rukovodstvo. Pod red GY Nazarenko, YB Geroevoy; per s angl AN Khytrovoy. M: Yzdatelskyy dom «Vydar»; 2007. 400 с. [Russian]
  14. Bucklein W, Vollert K, Wohlgemuth A, Bohndorf K. Ultrasonography of acute musculoskeletal disease. Eur Radiol. 2000; 10(2); 290–6. https://doi.org/10.1007/s003300050046
  15. Heidari P, Farahbakhsh F, Rostami M, Noormohammadpour P, Kordi R. The role of ultrasound of the causes of low back pain: a review of the literature. Asian J Sports Med. 2015; 6(1): e23803. https://www.ncbi.nlm.nih.gov/pubmed/25883773. https://www.ncbi.nlm.nih.gov/pmc/articles/4393543. https://doi.org/10.5812/asjsm.23803
  16. Arts IM, Pillen S, Schelhaas HJ, Overeem S, Zwarts MJ. Normal values for quantitative muscle ultrasonography in adults. Muscle Nerve. 2010; 41(1): 32–41. https://www.ncbi.nlm.nih.gov/pubmed/19722256. https://doi.org/10.1002/mus.21458
  17. Zuberi SM, Matta N, Nawaz S, Stephenson JBP, McWilliam RC, Hollman A. Muscle ultrasound in the assessment of suspected neuromuscular disease in childhood. Neuromuscul Disord. 1999; 9(4): 203–7. https://doi.org/10.1016/S0960-8966(99)00002-4
  18. Pillen S, Scholten RR, Zwarts MJ, Verrips A. Quantitative skeletal muscle ultrasonography in children with suspected neuromuscular disease. Muscle Nerve. 2003; 27(6): 699–705. https://doi.org/10.1002/mus.10385
  19. Pillen S, Verrips A, Alfen N van, Arts IMP, Sie LTL, Zwarts MJ. Quantitative skeletal muscle ultrasound: diagnostic value in childhood neuromuscular disease. Neuromuscul Disord. 2007; 17(7): 509–16. https://doi.org/10.1016/j.nmd.2007.03.008
  20. Walker F, Cartwright MS. Neuromuscular ultrasound. Philadelphia: Elsevier Saunders; 2011. 208 p.
  21. Wattjes MP, Kley RA, Fischer D. Neuromuscular imaging in inherited muscle diseases. Eur Radiol. 2010; 20(10): 47–60. https://www.ncbi.nlm.nih.gov/pubmed/20422195. https://www.ncbi.nlm.nih.gov/pmc/articles/2940021. https://doi.org/10.1007/s00330-010-1799-2
  22. Scholten RR, Pillen S, Verrips A, Zwarts MJ. Quantitative ultrasonography of skeletal muscles in children: normal values. Muscle Nerve. 2003; 27(6): 693–8. https://doi.org/10.1002/mus.10384
  23. Mayans D, Cartwright MS, Walker PO. Neuromuscular ultrasonography: quantifying muscle and nerve measurements. Phys Med Rehabil Clin N Am. 2012; 23(l): 133–48. https://www.ncbi.nlm.nih.gov/pubmed/22239880. https://www.ncbi.nlm.nih.gov/pmc/articles/3321511. https://doi.org/10.1016/j.pmr.2011.11.009
  24. Van Holsbeeck M, Introcaso J. Musculoskeletal ultrasound. St Louis: My Book; 1991. 316 p.
  25. Radchenko VA, Skydanov AG, Zmyenko YuA, y dr. Otsenka sostoyanyya paravertebralnykh myshts poyasnychnogo otdela pozvonochnyka s pomoshchyu kompyuternoy tomografyy (obzor lyteratury). Ortopedyya, travmatologyya y protezyrovanye. 2013; 4: 128–33. [Russian] https://doi.org/10.15674/0030-598720134128-133
  26. Ondo WG, Haykal HA. Paraspinal muscle asymmetry in Parkinson’s disease. Int J Neurosci. 2013; 124(2): 93–6. https://www.ncbi.nlm.nih.gov/pubmed/23865391. https://doi.org/10.3109/00207454.2013.825259
  27. Skidanov AG, Avrunin OG, Tymkovich MYu, ta in. Otsinyuvannya paravertebralnykh m’yakykh tkanyn za dopomogoyu komp’yuternoyi tomografiyi. Ortopedyya, travmatologyya y protezyrovanye. 2015; 3: 61–5. [Ukrainian] https://doi.org/10.15674/0030-59872015361-64
  28. Patent 111269 Ukraine, MPK A 61B 6/03, G06T 7/40, G06F 15/18. Sposib vyznachennya struktury paravertebralnykh m’yaziv za dopomogoyu komp’yuternoyi tomografiyi / Avrunin OG, Skidanov AG, Radchenko VO, ta in. (UA); zayavnik i vlasnik patentu DU «IPKhS im prof. MI Sytenka NAMN» (UA). № а201410285; zayavl 19.09.2014; opubl 10.02.2015. Byul № 3.
  29. Shahidi B, Parra CL, Berry DB, Hubbard JC, Gombatto S, Zlomislic V, et al. Contribution of lumbar spine pathology and age to paraspinal muscle size and fatty infiltration. Spine. 2017; 42(8): 616–23. https://www.ncbi.nlm.nih.gov/pubmed/27517512. https://www.ncbi.nlm.nih.gov/pmc/articles/5303569. https://doi.org/10.1097/BRS.0000000000001848
  30. Xu WB, Liu JH, Chen ZJ, et al. Multifidus muscle atrophy not observed following two-segment anterior interbody fusion: a rabbit model study with a 12-month follow-up. Spine. 2017; 42(10): 711–7. https://doi.org/10.1097/BRS.0000000000001917
  31. Takayama K, Kita T, Nakamura H, Kanematsu F, Yasunami T, Sakanaka H, Yamano Y.New predictive index for lumbar paraspinal muscle degeneration associated with aging. Spine. 2016; 41(2): E84–E90. https://doi.org/10.1097/BRS.0000000000001154
  32. Ohe A, Kimura T, Goh AC, Oba A, Takahashi J, Mogami Y. Characteristics of trunk control during crook-lying unilateral leg raising in different types of chronic low back pain patients. Spine. 2015; 40(8): 550–9. https://www.ncbi.nlm.nih.gov/pubmed/25868094. https://doi.org/10.1097/BRS.0000000000000828
  33. Nagar VR, Hooper TL, Dedrick GS, Brismée JM, Sizer PS Jr. Effect of recurrent low back pain history on volitional preemptive abdominal activation during a loaded functional reach activity. Spine. 2014; 39(2): E89–E96. https://www.ncbi.nlm.nih.gov/pubmed/24153166. https://doi.org/10.1097/BRS.0000000000000091
  34. Kim BJ, Lee SK. Effects of three spinal stabilization techniques on activation and thickness of abdominal muscle. J Exerc Rehabil. 2017; 13(2): 206–9. https://www.ncbi.nlm.nih.gov/pubmed/28503534. https://www.ncbi.nlm.nih.gov/pmc/articles/5412495. https://doi.org/10.12965/jer.1734900.450
  35. Gibbon KC, Debuse D, Hibbs A, Caplan N. Reliability and precision of sonography of the lumbar multifidus and transversus abdominis during dynamic activities. J Ultrasound Med. 2017; 36(3): 571–81. https://www.ncbi.nlm.nih.gov/pubmed/28150321. https://doi.org/10.7863/ultra.16.03059
  36. Vohra P, Kasana VP, Arya RK. Role of MRI and ultrasonography in evaluation of multifidus muscle in chronic low back pain patients. Int J Res Med Sci. 2016; 4(12): 5302–9. https://doi.org/10.18203/2320-6012.ijrms20164199
  37. Øverås CK, Myhrvold BL, Røsok G, Magnesen E. Musculoskeletal diagnostic ultrasound imaging for thickness measurement off our principal muscle softhe cervical spine — a reliability and agreement study. Chiropractic&Manual Therapies. 2017; 25(2): 2. https://www.ncbi.nlm.nih.gov/pubmed/28070269. https://www.ncbi.nlm.nih.gov/pmc/articles/5215195. https://doi.org/10.1186/s12998-016-0132-9
  38. Berglund L, Aasa B, Michaelson P, Aasa U. Effects of low-load motor control exercises and a high-load lifting exercise on lumbar multifidus thickness: a randomized controlled trial. Spine. 2017; 42(15): E876–E882. https://www.ncbi.nlm.nih.gov/pubmed/27870804. https://doi.org/10.1097/BRS.0000000000001989
  39. Masaki M, Ikezoe T, Fukumoto Y, Minami S, Aoyama J, Ibuki S, et al. Association of walking speed with sagittal spinal alignment, muscle thickness, and echo intensity of lumbar back muscles in middle-aged and elderly women. Aging Clin Exp Res. 2016; 28(3): 429–34. https://www.ncbi.nlm.nih.gov/pubmed/26319656. https://doi.org/10.1007/s40520-015-0442-0
  40. Pillen S. Skeletal muscle ultrasound. Eur J Translational myology. 2010; 1(4): 145–55. https://doi.org/10.4081/ejtm.2010.1812
  41. Luchevaya dyagnostyka: uchebnyk dlya VUZov v 2-kh t. Vol 1. Ed by GE Trufanova. M: GEOTAR-Medya; 2009. 416 s. [Russian]
  42. Patent 2082319 RU. MPK A61V 8/08. Sposob kolychestvennoy otsenky ultrasonografycheskogo yzobrazhenyya organov y tkaney / Kynzerskyy AYu, Kynzerskaya ML, Leontev SP, Medvedev DV. (RU); patentoobladately Kynzerskyy AYu, Kyyzerskaya ML, Leontev SY, Medvedev DV (RU). № 94024339/14; zayavl. 09.06.94; opubl. 27.06.97. Otkrytyya. Yzobretenyya. 1997. Byul № 18. [Russian]
  43. Nielsen PK, Jensen BR, Darvann T, Jørgensen K, Bakke M. Quantitative ultrasound tissue characterization in shoulder and thigh muscles — a new approach. BMC musculoskeletal Disorders. 2006; 7: 2. https://www.ncbi.nlm.nih.gov/pubmed/16420695. https://www.ncbi.nlm.nih.gov/pmc/articles/1402295. https://doi.org/10.1186/1471-2474-7-2
  44. Zaidman СM, Malkus EС, Siener С, Florence J, Pestronk A, Al-Lozi M. Qualitative and quantitative skeletal muscle ultrasound in late-onset acid maltase deficiency. Muscle Nerve. 2011; 44(3): 418–23. https://www.ncbi.nlm.nih.gov/pubmed/21755514. https://www.ncbi.nlm.nih.gov/pmc/articles/3193541. https://doi.org/10.1002/mus.22088
  45. Boon AJ, Smith J, Harper СM. Ultrasound applications in electrodiagnosis. PMR. 2012; 4: 37–49. https://www.ncbi.nlm.nih.gov/pubmed/22269451. https://doi.org/10.1016/j.pmrj.2011.07.004
  46. Pillen S, van Keimpema M, Nievelstein RA, Verrips A, van Kruijsbergen-Raijmann W, Zwarts MJ. Skeletal muscle ultrasonography: visual versus quantitative evaluation. J Ultrasound Med Biol. 2006; 32(9): 1315–21. https://www.ncbi.nlm.nih.gov/pubmed/16965971. https://doi.org/10.1016/j.ultrasmedbio.2006.05.028
  47. Kader DF, Wardlaw D, Smith FW. Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol. 2000; 55(2): 145–9. https://www.ncbi.nlm.nih.gov/pubmed/10657162. https://doi.org/10.1053/crad.1999.0340
  48. Khoury V, Cardinal E, Brassard P. Atrophy and fatty infiltration of the supraspinatus muscle: Sonography versus MRI. Am J Roentgenol. 2008; 190(4): 1105–11. https://www.ncbi.nlm.nih.gov/pubmed/18356462. https://doi.org/10.2214/AJR.07.2835
  49. Maurits NM, Bollen AE, Windhausen A, De Jager AE, Van Der Hoeven JH. Muscle ultrasound analysis: normal values and differentiation between myopathies and neuropathies. Ultrasound in Medicine and Biology. 2003; 29(2): 215–25. https://www.ncbi.nlm.nih.gov/pubmed/12659909
  50. Li X, Karmakar MK, Lee A, Kwok WH, Critchley LA, Gin T. Quantitative evaluation of the echointensity of the median nerve and flexor muscles of the forearm in the young and the elderly. Br J Radiol. 2012; 85: e140–5. https://www.ncbi.nlm.nih.gov/pubmed/22010029. https://www.ncbi.nlm.nih.gov/pmc/articles/3474090. https://doi.org/10.1259/bjr/30878012
  51. Masaki M, Aoyama T, Murakami T, Yanase K, Ji X, Tateuchi H, Ichihashi N. Association of low back pain with muscle stiffness and muscle mass of the lumbar back muscles, and sagittal spinal alignment in young and middle-aged medical workers. Clin Biomech. 2017; 49: 128–33. https://www.ncbi.nlm.nih.gov/pubmed/28934633. https://doi.org/10.1016/j.clinbiomech.2017.09.008
  52. Dvoryakovskyy YV, Akoev YuS, Dvoryakovskyy YY, Sukhareva VK. Ultrazvukovaya otsenka myshts shey u detey s vrozhdennoy myshechnoy kryvosheey. Ultrazvukovaya y funktsyonalnaya dbagnostyka. 2005; 3: 47–9. [Russian]
  53. Maurits NM, Beenakker EA, vanSchaik DE, Fock JM, van der Hoeven JH. Muscle ultrasound in children: normal values and application to neuromuscular disorders. Ultrasound Med Biol. 2004; 30(8): 17–27. https://doi.org/10.1016/j.ultrasmedbio.2004.05.013
  54. Lee CD, Song Y, Peltier AC, Jarquin‐Valdivia AA, Donofrio PD. Muscle ultrasound quantifies the rate of reduction of muscle thickness in amyotrophic lateral sclerosis. Muscle Nerve. 2010; 42: 814–9. https://doi.org/10.1002/mus.21779
  55. Arts IM, Van Rooij FG, Overeem S, Pillen S, Janssen HM, Schelhaas HJ, Zwarts MJ. Quantitative muscle ultrasonography in amyotrophic lateral sclerosis. Ultrasound Med Biol. 2008; 34(3): 354–61. https://www.ncbi.nlm.nih.gov/pubmed/17964067. https://doi.org/10.1016/j.ultrasmedbio.2007.08.013
  56. Reimers K, Reimers CD, Wagner S, Paetzke I, Pongratz DE. Skeletal muscle sonography: a correlative study of echogenicity and morphology. Ultrasound Med. 1993; 12(2): 73–7. https://www.ncbi.nlm.nih.gov/pubmed/8468739
  57. Pillen S, Так RО, Zwarts MJ, Lammens MM, Verrijp KN, Arts IM, et al. Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasoundin medicine&Biology. 2009; 35(3): 443–6. https://www.ncbi.nlm.nih.gov/pubmed/19081667. https://doi.org/10.1016/j.ultrasmedbio.2008.09.016.
  58. Danyshchuk ZN, Skydanov AG, Batura YA. Morfologyya paravertebralnykh myshts patsyentov s degeneratyvnymy zabolevanyyamy poyasnychnogo otdela pozvonochnyka. Tavrycheskyy medyko-byologycheskyy vestnyk. 2013; 16: 37–41. [Russian]
  59. Radchenko VO, Skidanov AG, Morozenko DV, ta in. Vidnosnyy vmist riznykh tkanyn u paravertebralnykh m’yazakh poperekovogo viddilu khrebta za umov degeneratyvnykh zakhvoryuvan ta u zdorovykh zalezhno vid viku. Ortopedyya, travmatologyya y protezyrovanye. 2017; 1: 80–6. [Ukrainian] https://doi.org/10.15674/0030-59872017180-86
  60. Hu CF, Chen CP, Tsai WC, Hu LL, Hsu CC, Tseng ST, Shau YW. Quantification of skeletal muscle fibrosis at different healling stages using sonography. Morphologic and histologic study in ananimal model. J Ultrasound Med. 2012; 31(1): 43–8. https://www.ncbi.nlm.nih.gov/pubmed/22215768
  61. Shah JP, Thaker N, Heimur J, Aredo JV, Sikdar S, Gerber L. Myofascial trigger points then and now: a historical and scientific perspective. PMRJ. 2015; 7(7): 746–61. https://www.ncbi.nlm.nih.gov/pubmed/25724849. https://www.ncbi.nlm.nih.gov/pmc/articles/4508225. https://doi.org/10.1016/j.pmrj.2015.01.024
  62. Golubev VG, Kkhyr Bek M, Yulov VV, Goncharov NG. Otsenka ultrazvukovykh dannykh nervno-myshechnogo apparata pry travmakh luchevogo nerva. Khyrurgyya. Zhurnal im NY Pyrogova. 2011; 10: 58–65. [Russian]
  63. Strafun SS. Kompleksne ortopedychne likuvannya khvorykh z zastarilymy ushkodzhennyamy plechovogo spletennya ta peryferychnykh nerviv verkhnoyi kintsivky: Abstr. Dr. Sci. (Med.). Kyiv; 1999. 32 с. [Ukrainian]
  64. Küllmer K, Sievers KW, Reimers CD, [et al.] Changes of sonographic, magnetic resonance tomographic, electromyographic and histopathologic findings within a 2-month period of examination after experimental muscle denervation. Archives of Orthopaedic and Trauma Surgery. 1998; 117(4–5): 228–34. https://doi.org/10.1007/s004020050234
  65. Bargfrede M, Schwennicke A, Tumani H, Reimers C. Quantitative ultrasonography in focal neuropathies as compared to clinical and EMG findings. Eur J Ultrasound. 1999; 10(1): 21–9. https://www.ncbi.nlm.nih.gov/pubmed/10502636. https://doi.org/10.1016/S0929-8266(99)00040-3
  66. Jung JC, Lee SG, Kim JH, [et al.] The significance of echogenicity in denervated skeletal muscle. Chonnam Med J. 2001; 37(4): 383–8.
  67. Kulmer K, Reimers CD, Eysel P, Harland UD. Ultrasound follow-up after experimental muscle denervation. Ultraschall Med. 1996; 17(5): 225–8.