ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 5 of 45
Up
УЖМБС 2023, 8(1): 41–49
https://doi.org/10.26693/jmbs08.01.041
Medicine. Reviews

Features of VR Rehabilitation in Patients with Parkinson's Disease

Nazhar Saleh S. Kh., Seleznyova S. V., Kozynskyi O. V., Mamedalieva Sevinj Ali-Kyzy, Hira Harpreet Singh
Abstract

The purpose of the study was to determine the possibilities and effectiveness of VR rehabilitation in patients with Parkinson's disease compared to conventional rehabilitation intervention according to literature sources. Materials and methods. The study was carried out based on the results of the research and analysis of existing global scientific studies with the establishment of the possibilities and effectiveness of VR rehabilitation in patients with Parkinson's disease compared to the usual rehabilitation intervention. The search for information was performed using domestic and foreign Internet resources such as Google Scholar, PubMed, Medscape, Scopus, Web of Science databases, etc. Results and discussion. Treatment for Parkinson's disease is aimed at restoring motor and non-motor manifestations, which is corrected by appropriate pharmacological and surgical means, which are not fully effective without the addition of adequate rehabilitation interventions. Drug therapy is effective only in the first stages of the disease (some disorders do not respond to pharmacological agents at all); and deep stimulation of the affected area of the brain by implanting electrodes with their incorrect intraoperative location or incorrect stimulation parameters can provoke additional motor and sensory disorders and other adverse reactions. Physical rehabilitation in Parkinson's disease is an effective addition to drug therapy and surgery, and a long-term rehabilitation intervention effectively improves motor skills and cognitive abilities in this disease. In Parkinson's disease, rehabilitative measures aimed at motor-cognitive interactions are more useful in the early stages, which makes it possible to improve motor skills and general daily activities of the patient in real life. However, with the progression of Parkinson's disease, motor-cognitive impairments significantly limit the ability to learn, so it is directed at altered subcortical and cortical mechanisms of plasticity, which makes patients especially dependent on external sources of feedback. This problem is quite well leveled by the use of VR rehabilitation mechanisms. The effectiveness of rehabilitation with VR methodology in Parkinson's disease is determined by the need to take into account the arising sensory-motor and cognitive disorders, accurate assessment of the effectiveness of rehabilitation measures, optimized adaptation and safety for the patient himself. Conclusion. When determining the possibilities of VR rehabilitation technologies in patients with Parkinson's disease compared to conventional rehabilitation intervention, it was determined that these technologies are the most promising methods of treatment and rehabilitation intervention and an effective tool for the revitalization of disorders, have a number of advantages in the rehabilitation of gait and balance disorders, cognitive shifts, improving the quality of life and daily activities of patients, leveling neuropsychic symptoms, improving the plasticity of motor nerves and muscle control

Keywords: Parkinson's disease, VR rehabilitation, rehabilitation intervention, gait disorder, balance disorder, cognitive functions

Full text: PDF (Ukr) 276K

References
  1. Canning CG, Paul SS, Alice N. Prevention of falls in Parkinson's disease: a review of fall risk factors and the role of physical interventions. Neurodegener Dis Manag. 2014;3:203-221. PMID: 25095816. https://doi.org/10.2217/nmt.14.22
  2. Silva KG, De Freitas TB, Doná F, Ganança FF, Ferraz HB, Torriani-Pasin C, et al. Effects of virtual rehabilitation versus conventional physical therapy on postural control, gait, and cognition of patients with Parkinson's disease: study protocol for a randomized controlled feasibility trial. Pilot Feasibility Stud. 2017 Dec 6;3:68. PMID: 29225912. PMCID: PMC5719545. https://doi.org/10.1186/s40814-017-0210-3
  3. Abraham A, Duncan RP, Earhart GM. The Role of Mental Imagery in Parkinson's Disease Rehabilitation. Brain Sciences. 2021;11(2):185. PMID: 33540883. PMCID: PMC7913152. https://doi.org/10.3390/brainsci11020185
  4. Kalia LV, Lang AE. Parkinson's disease. Lancet. 2015;386:896-912. PMID: 25904081. https://doi.org/10.1016/S0140-6736(14)61393-3
  5. GBD 2016 Parkinson's Disease Collaborators. Global, regional, and national burden of Parkinson's disease, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018 Nov;17(11):939-953. PMID: 30287051. https://doi.org/10.1016/S1474-4422(18)30295-3
  6. Parkinson's U. K. The incidence and prevalence of Parkinson's in the UK. Results from the Clinical Practice Research Datalink Summary report. Available from: https://www.parkinsons.org.uk/sites/default/files/2018-01/CS2960%20Incidence%20and%20prevalence%20report%20branding%20summary%20report.pdf
  7. Tysnes OB, Storstein A. Epidemiology of Parkinson's disease. J Neural Transm (Vienna). 2017;124;901-905. PMID: 28150045. https://doi.org/10.1007/s00702-017-1686-y
  8. Nerius M, Fink A, Doblhammer G. Parkinson's disease in Germany: prevalence and incidence based on health claims data. Acta Neurol Scand. 2017;5:386-392. PMID: 27726128. PMCID: PMC5655709. https://doi.org/10.1111/ane.12694
  9. Del Din S, Godfrey A, Galna B, Lord S, Rochester L. Free-living gait characteristics in ageing and Parkinson's disease: impact of environment and ambulatory bout length. J Neuroeng Rehabil. 2016 May 12;13(1):46. PMID: 27175731. PMCID: PMC4866360. https://doi.org/10.1186/s12984-016-0154-5
  10. Ball N, Teo WP, Chandra S, Chapman J. Parkinson's disease and the environment. Front Neurol. 2019;19:218.
  11. Fasano A, Canning CG, Hausdorff JM, Lord S, Rochester L. Falls in Parkinson's disease: a complex and evolving picture. Mov Disord. 2017 Nov;32(11):1524-1536. PMID: 29067726. https://doi.org/10.1002/mds.27195
  12. Lo Monaco MR, Petracca M, Weintraub D, Fusco D, Liperoti R, Zuccalà G, et al. Prevalence of impulsive-compulsive symptoms in elderly Parkinson's disease patients: a case-control study. J Clin Psychiatry. 2018 May/Jun;79(3):17m11612. PMID: 29702754. https://doi.org/10.4088/JCP.17m11612
  13. Seppi K, Ray Chaudhuri K, Coelho M, Fox SH, Katzenschlager R, Perez Lloret S, et al; the collaborators of the Parkinson's Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for nonmotor symptoms of Parkinson's disease - an evidence-based medicine review. Mov Disord. 2019 Feb;34(2):180-198. PMID: 30653247. PMCID: PMC6916382. https://doi.org/10.1002/mds.27602
  14. Strouwen C, Molenaar EALM, Münks L, Broeder S, Ginis P, Bloem BR, et al. Determinants of dual-task training effect size in Parkinson disease: who will benefit most? J Neurol Phys Ther. 2019 Jan;43(1):3-11. PMID: 30531381. https://doi.org/10.1097/NPT.0000000000000247
  15. Marinelli L, Trompetto C, Canneva S, Mori L, Nobili F, Fattapposta F, et al. Learning "How to Learn": super declarative motor learning is impaired in Parkinson's disease. Neural Plast. 2017;2017:3162087. PMID: 28828186. PMCID: PMC5554559. https://doi.org/10.1155/2017/3162087
  16. Stuart S, Lord S, Hill E, Rochester L. Gait in Parkinson's disease: a visuo-cognitive challenge. Neurosci Biobehav Rev. 2016 Mar;62:76-88. PMID: 26773722. https://doi.org/10.1016/j.neubiorev.2016.01.002
  17. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017 Mar 23;3:17013. PMID: 28332488. https://doi.org/10.1038/nrdp.2017.13
  18. Rizos A, Martinez-Martin P, Odin P, Antonini A, Kessel B, Kozul TK, et al.; EUROPAR and the IPDMDS non-Motor PD Study Group. Characterizing motor and non-motor aspects of early-morning off periods in Parkinson's disease: An international multicenter study. Parkinsonism Relat Disord. 2014 Nov;20(11):1231-5. PMID: 25269446. https://doi.org/10.1016/j.parkreldis.2014.09.013
  19. Armstrong MJ, Okun MS. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA. 2020 Feb 11;323(6):548-560. PMID: 32044947. https://doi.org/10.1001/jama.2019.22360
  20. Baizabal-Carvallo JF, Jankovic J. Movement disorders induced by deep brain stimulation. Parkinsonism Relat Disord. 2016 Apr;25:1-9. PMID: 26806438. https://doi.org/10.1016/j.parkreldis.2016.01.014
  21. David FJ, Robichaud JA, Leurgans SE, Poon C, Kohrt WM, Goldman JG, et al. Exercise improves cognition in Parkinson's disease: The PRET‐PD randomized, clinical trial. Mov Disord. 2015 Oct;30(12):1657-63. PMID: 26148003. PMCID: PMC4609235. https://doi.org/10.1002/mds.26291
  22. Viñas-Diz S, Sobrido-Prieto M. [Virtual reality for therapeutic purposes in stroke: A systematic review]. Neurología (English Edition). 2016 May;31(4):255-77. [Spanish]. PMID: 26321468. https://doi.org/10.1016/j.nrl.2015.06.012
  23. Mak MK, Wong-Yu IS, Shen X, Chung CL. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat Rev Neurol. 2017 Nov;13(11):689-703. PMID: 29027544. https://doi.org/10.1038/nrneurol.2017.128
  24. de Natale ER, Paulus KS, Aiello E, Sanna B, Manca A, Sotgiu G, et al. Dance therapy improves motor and cognitive functions in patients with Parkinson's disease. NeuroRehabilitation. 2017;40(1):141-144. PMID: 27814308. https://doi.org/10.3233/NRE-161399
  25. Nonnekes J, Nieuwboer A. Towards personalized rehabilitation for gait impairments in Parkinson's disease. J Parkinsons Dis. 2018;8(s1):S101-S106. PMID: 30584154. PMCID: PMC6311370. https://doi.org/10.3233/JPD-181464
  26. Shen X, Wong-Yu IS, Mak MK. Effects of exercise on falls, balance, and gait ability in Parkinson's disease: a meta-analysis. Neurorehabil Neural Repair. 2016 Jul;30(6):512-27. PMID: 26493731. https://doi.org/10.1177/1545968315613447
  27. Strouwen C, Molenaar EALM, Münks L, Keus SHJ, Zijlmans JCM, Vandenberghe W, et al. Training dual tasks together or apart in Parkinson's disease: results from the DUALITY trial. Mov Disord. 2017 Aug;32(8):1201-1210. PMID: 28440888. https://doi.org/10.1002/mds.27014
  28. Löfgren N, Conradsson D, Joseph C, Leavy B, Hagströmer M, Franzén E. Factors associated with responsiveness to gait and balance training in people with Parkinson disease. J Neurol Phys Ther. 2019 Jan;43(1):42-49. PMID: 30531385. https://doi.org/10.1097/NPT.0000000000000246
  29. Chivers Seymour K, Pickering R, Rochester L, Roberts HC, Ballinger C, Hulbert S, et al. Multicentre, randomised controlled trial of PDSAFE, a physiotherapist-delivered fall prevention programme for people with Parkinson's / K. Chivers Seymour et al. J Neurol Neurosurg Psychiat. 2019 Jul;90(7):774-782. PMID: 30944149. PMCID: PMC6585265. https://doi.org/10.1136/jnnp-2018-319448
  30. Krakauer JW, Hadjiosif AM, Xu J, Wong AL, Haith AM. Motor learning. Compr Physiol. 2019 Mar 14;9(2):613-663. PMID: 30873583. https://doi.org/10.1002/cphy.c170043
  31. Ellis T, Rochester L. Mobilizing Parkinson's disease: the future of exercise. J Parkinsons Dis. 2018;8(s1):S95-S100. PMID: 30584167. PMCID: PMC6311359. https://doi.org/10.3233/JPD-181489
  32. Ellis TD, Dibble LE, Peterson DS. Moving beyond effectiveness. J Neurol Phys Ther. 2019 Jan;43(1):1-2. PMID: 30531380. https://doi.org/10.1097/NPT.0000000000000248
  33. Conradsson D, Nero H, Löfgren N, Hagströmer M, Franzén E. Monitoring training activity during gait-related balance exercise in individuals with Parkinson's disease: a proof-of-concept-study. BMC Neurol. 2017 Jan 31;17(1):19. PMID: 28143463. PMCID: PMC5282864. https://doi.org/10.1186/s12883-017-0804-7
  34. Rose T, Chang SN, Chen KB. Immersion of virtual reality for rehabilitation-Review. Appl Ergon. 2018 May;69:153-161. PMID: 29477323. https://doi.org/10.1016/j.apergo.2018.01.009
  35. Perez-Marcos D. Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation. J Neuroeng Rehabil. 2018 Nov 26;15(1):113. PMID: 30477527. PMCID: PMC6258149. https://doi.org/10.1186/s12984-018-0461-0
  36. Tieri G, Morone G, Paolucci S, Iosa M. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Rev Med Devices. 2018 Feb;15(2):107-117. PMID: 29313388. https://doi.org/10.1080/17434440.2018.1425613
  37. Beibei L, Qinneng D, Wusheng Z. Research progress on the role of virtual reality technology in rehabilitation of nervous system diseases. Chin J Contemp Neurol Neurosurg. 2018;03:222-225.
  38. Bluett B, Bayram E, Litvan I. The virtual reality of Parkinson's disease freezing of gait: a systematic review. Parkinsonism Relat Disord. 2019 Apr;61:26-33. PMID: 30470656. PMCID: PMC6773254. https://doi.org/10.1016/j.parkreldis.2018.11.013
  39. Dockx K, Bekkers EM, Van den Bergh V, Ginis P, Rochester L, Hausdorff JM, et al. Virtual reality for rehabilitation in Parkinson's disease. Cochrane Database Syst Rev. 2016 Dec 21;12(12):CD010760. PMID: 28000926. PMCID: PMC6463967. https://doi.org/10.1002/14651858.CD010760.pub2
  40. Garcia-Agundez A, Folkerts AK, Konrad R, Caserman P, Tregel T, Goosses M, et al. Recent advances in rehabilitation for Parkinson's disease with exergames: a systematic review. J Neuroeng Rehabil. 2019 Jan 29;16(1):17. PMID: 30696453. PMCID: PMC6352377. https://doi.org/10.1186/s12984-019-0492-1
  41. Santos P, Scaldaferri G, Santos L, Ribeiro N, Neto M, Melo A. Effects of the Nintendo Wii training on balance rehabilitation and quality of life of patients with Parkinson's disease: a systematic review and meta-analysis. NeuroRehabilitation. 2019;44(4):569-577. PMID: 31256088. https://doi.org/10.3233/NRE-192700
  42. Wang B, Shen M, Wang YX, He ZW, Chi SQ, Yang ZH. Effect of virtual reality on balance and gait ability in patients with Parkinson's disease: a systematic review and meta-analysis. Clin Rehabil. 2019 Jul;33(7):1130-1138. PMID: 31016994. https://doi.org/10.1177/0269215519843174
  43. Parsons TD, Gaggioli A, Riva G. Virtual Reality for Research in Social Neuroscience. Brain Sci. 2017 Apr 16;7(4):42. PMID: 28420150. PMCID: PMC5406699. https://doi.org/10.3390/brainsci7040042
  44. Pan X, Hamilton A. Why and how to use virtual reality to study human social interaction: The challenges of exploring a new research landscape. Br J Psychol. 2018 Aug;109(3):395-417. PMID: 29504117. PMCID: PMC6055846. https://doi.org/10.1111/bjop.12290
  45. Maidan I, Rosenberg-Katz K, Jacob Y, Giladi N, Hausdorff JM, Mirelman A. Disparate effects of training on brain activation in Parkinson disease. Neurology. 2017 Oct 24;89(17):1804-1810. PMID: 28954877. https://doi.org/10.1212/WNL.0000000000004576
  46. Baetzner AS, Wespi R, Hill Y, Gyllencreutz L, Sauter TC, Saveman BI, et al. Preparing medical first responders for crises: a systematic literature review of disaster training programs and their effectiveness. Scand J Trauma Resusc Emerg Med. 2022 Dec 24;30(1):76. PMID: 36566227. https://doi.org/10.1186/s13049-022-01056-8
  47. Feng Z. Immersive Virtual Reality Serious Games for Evacuation Training and Research: A Systematic Literature Review. Comput Educ. 2018. P. 252-266. https://doi.org/10.1016/j.compedu.2018.09.002
  48. Freeman D, Haselton P, Freeman J, Spanlang B, Kishore S, Albery E, et al. Automated psychological therapy using immersive virtual reality for treatment of fear of heights: a single-blind, parallel-group, randomised controlled trial. Lancet Psychiatry. 2018 Aug;5(8):625-632. PMID: 30007519. https://doi.org/10.1016/S2215-0366(18)30226-8
  49. Reger GM, Smolenski D, Norr A, Katz A, Buck B, Rothbaum BO. Does Virtual Reality Increase Emotional Engagement During Exposure for PTSD? Subjective Distress During Prolonged and Virtual Reality Exposure Therapy. J Anxiety Disord. 2019 Jan;61:75-81. PMID: 29935999. https://doi.org/10.1016/j.janxdis.2018.06.001
  50. Canning CG, Allen NE, Nackaerts E, Paul SS, Nieuwboer A, Gilat M. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat Rev Neurol. 2020 Aug;16(8):409-425. PMID: 32591756. https://doi.org/10.1038/s41582-020-0370-2
  51. Gallagher R, Damodaran H, Werner WG, Powell W, Deutsch JE. Auditory and visual cueing modulate cycling speed of older adults and persons with Parkinson's disease in a Virtual Cycling (V-Cycle) system. J NeuroEngineering Rehabil. 2016 Aug 19;13(1):77. PMID: 27543195. PMCID: PMC4992269. https://doi.org/10.1186/s12984-016-0184-z
  52. Iruthayarajah J, McIntyre A, Cotoi A, Macaluso S, Teasell R. The use of virtual reality for balance among individuals with chronic stroke: a systematic review and meta-analysis. Top Stroke Rehabil. 2017 Jan;24(1):68-79. PMID: 27309680. https://doi.org/10.1080/10749357.2016.1192361
  53. Donath L, Rössler R, Faude O. Effects of Virtual Reality Training (Exergaming) Compared to Alternative Exercise Training and Passive Control on Standing Balance and Functional Mobility in Healthy Community-Dwelling Seniors: A Meta-Analytical Review. Sports Med. 2016 Sep;46(9):1293-309. PMID: 26886474. https://doi.org/10.1007/s40279-016-0485-1
  54. Xiaoxiao W, HongWei D, Hang L, AiHong W. Effects of Virtual Reality on Balance and Activities of Daily Living in Patients with Parkinson's Disease: A Meta-Analysis. Chin J Rehabil Theory Pract. 2017;12:1443-1449.
  55. Benoit M, Guerchouche R, Petit PD, Chapoulie E, Manera V, Chaurasia G, et al. Is it possible to use highly realistic virtual reality in the elderly? A feasibility study with image-based rendering. Neuropsychiatr Dis Treat. 2015 Mar 3;11:557-63. PMID: 25834437. PMCID: PMC4357614. https://doi.org/10.2147/NDT.S73179
  56. Cano Porras D, Siemonsma P, Inzelberg R, Zeilig G, Plotnik M. Advantages of virtual reality in the rehabilitation of balance and gait: systematic review. Neurology. 2018 May 29;90(22):1017-1025. PMID: 29720544. https://doi.org/10.1212/WNL.0000000000005603
  57. De Keersmaecker E, Lefeber N, Geys M, Jespers E, Kerckhofs E, Swinnen E. Virtual reality during gait training: does it improve gait function in persons with central nervous system movement disorders? A systematic review and meta-analysis. NeuroRehabilitation. 2019;44(1):43-66. PMID: 30814368. https://doi.org/10.3233/NRE-182551
  58. Hamilton C, Lovarini M, McCluskey A, Folly de Campos T, Hassett L. Experiences of therapists using feedback-based technology to improve physical function in rehabilitation settings: a qualitative systematic review. Disabil Rehabil. 2019 Jul;41(15):1739-1750. PMID: 29513052. https://doi.org/10.1080/09638288.2018.1446187
  59. Hassett L, van den Berg M, Allen N. Everyday Technologies in Healthcare. Florida US; 2019. p. 141-174.
  60. Peterson SM, Rios E, Ferris DP. Transient visual perturbations boost short-term balance learning in virtual reality by modulating electrocortical activity. J Neurophysiol. 2018 Oct 1;120(4):1998-2010. PMID: 30044183. PMCID: PMC7054635. https://doi.org/10.1152/jn.00292.2018
  61. Weech S, Kenny S, Barnett-Cowan M. Presence and cybersickness in virtual reality are negatively related: a review. Front Psychol. 2019 Feb 4;10:158. PMID: 30778320. PMCID: PMC6369189. https://doi.org/10.3389/fpsyg.2019.00158
  62. Wingham J, Adie K, Turner D, Schofield C, Pritchard C. Participant and caregiver experience of the Nintendo Wii Sports™ after stroke: qualitative study of the trial of Wii™ in stroke (TWIST). Clin Rehabil. 2015 Mar;29(3):295-305. PMID: 25125442. https://doi.org/10.1177/0269215514542638
  63. Ying W, Hua P, Fan J, Na C, Lei Z, Shuo Y. Analysis of tremor characteristics in patients with Parkinson's disease in different stages. Chin J Neuroimmunol Neurol. 2017;1:25-28. https://doi.org/10.1016/j.jneuroim.2014.04.012
  64. Lei C, Sunzi K, Dai F, Liu X, Wang Y, Zhang B, et al. Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson's disease: A systematic review. PloS One. 2019 Nov 7;14(11):e0224819. PMID: 31697777. PMCID: PMC6837756. https://doi.org/10.1371/journal.pone.0224819
  65. Triegaardt J, Han TS, Sada C, Sharma S, Sharma P. The role of virtual reality on outcomes in rehabilitation of Parkinson's disease: meta-analysis and systematic review in 1031 participants. Neurol Sci. 2020 Mar;41(3):529-536. PMID: 31808000. PMCID: PMC7040061. https://doi.org/10.1007/s10072-019-04144-3
  66. Shen X, Mak MK. Balance and Gait Training With Augmented Feedback Improves Balance Confidence in People With Parkinson's Disease: A Randomized Controlled Trial. Neurorehabil Neural Repair. 2014 Jul;28(6):524-35. PMID: 24407915. https://doi.org/10.1177/1545968313517752
  67. Sampson P, Freeman C, Coote S, Demain S, Feys P, Meadmore K, et al. Using Functional Electrical Stimulation Mediated by Iterative Learning Control and Robotics to Improve Arm Movement for People With Multiple Sclerosis. IEEE Trans Neural Syst Rehabil Eng. 2016 Feb;24(2):235-48. PMID: 25823038. https://doi.org/10.1109/TNSRE.2015.2413906
  68. Mahajan HP, Spaeth DM, Dicianno BE, Brown K, Cooper RA. Preliminary evaluation of variable compliance joystick for people with multiple sclerosis. J Rehabil Res Dev. 2014;51(6):951-62. PMID: 25356558. https://doi.org/10.1682/jrrd.2013.01.0023
  69. Yelshyna D, Gago MF, Bicho E, Fernandes V, Gago NF, Costa L, et al. Compensatory postural adjustments in Parkinson's disease assessed via a virtual reality environment. Behav Brain Res. 2016 Jan 1;296:384-392. PMID: 26304718. https://doi.org/10.1016/j.bbr.2015.08.017
  70. Zhen L, Xiuguo H, Jing S, Shaojun M. Virtual reality for improving balance in patients after stroke: A systematic review and meta-analysis. Clin Rehabil. 2016 May;30(5):432-40. PMID: 26141808. https://doi.org/10.1177/02692155155936
  71. Pazzaglia C, Imbimbo I, Tranchita E, Minganti C, Ricciardi D, Lo Monaco R, et al. Comparison of virtual reality rehabilitation and conventional rehabilitation in Parkinson's disease: a randomised controlled trial. Physiotherapy. 2020 Mar;106:36-42. PMID: 32026844. https://doi.org/10.1016/j.physio.2019.12.007