ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 21 of 25
УЖМБС 2022, 7(4): 137–146

Stress and the Gut-Brain Axis

Kharchenko Yu. V. 1, Titov H. I. 2, Kryzhanovskyi D. H. 2, Fedchenko M. P. 2, Chernenko H. P. 2, Filipenko V. V. 2, Miakushko V. A. 2

The purpose of the review was to study the effects of stress on the gut microbiota. Results and discussion. The gut microbiota forms a complex microbial community that has a significant impact on human health. The composition of the microbiota varies from person to person, and it changes throughout life. It is known that the microbiome can be altered due to diet, various processes, such as inflammation and/or stress. Like all other areas of medicine, microbiology is constantly growing. The gut microbiota lives in a symbiotic relationship with the human host. It is now believed to interact with almost all human organs, including the central nervous system, in the so-called «gut-brain-microbiome axis». Recently, a growing level of research is showing that microbes play a much bigger role in our lives than previously thought, and can have a myriad of effects on how we behave and think, and even on our mental health. The relationship between the brain and the microbiota is bidirectional and includes endocrine, neuronal, immune, and metabolic pathways. The microbiota interacts with the brain through various mechanisms and mediators, including cytokines, short-chain fatty acids, hormones, and neurotransmitters. According to the hypothalamic-pituitary-adrenocortical axis imbalance theory, hormonal imbalances are closely related to psychiatric illness, anxiety, and stress disorders. Therefore, the gut microbiome is closely related to the development and functioning of this axis. The microbiota can influence neurotransmitter levels in a variety of ways, including the secretion of gamma-aminobutyric acid, norepinephrine, dopamine, and serotonin, and can even regulate serotonin synthesis. These neurotransmitters can influence the hormonal status of the body, and the hormones themselves can influence the formation of the qualitative and quantitative composition of the microbiota. Accordingly, a change in the composition of the intestinal microbiota may be responsible for modifying the hormonal levels of the human body. The endocrine environment in the gut can also be modulated through the neuro-enteroendocrine system. Conclusion. Today, it is known that microbiota changes can be associated with several disorders of the nervous system, such as neuropsychiatric, neurodegenerative and neuroinflammatory processes. Research in recent decades has shown that disorders of the nervous system and mood disorders are associated with changes in the balance of neurotransmitters in the brain. Therefore, understanding the role of microbiota in the development and functioning of the brain is of great importance

Keywords: gut microbiota, gut-brain axis, stress, probiotics

Full text: PDF (Ukr) 276K

  1. Kundu P, Blacher E, Elinav E, Pettersson S: Our gut microbiome: the evolving inner self. Cell. 2017;171:1481-1493. PMID: 29245010. doi: 10.1016/j.cell.2017.11.024
  2. Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell. 2019;177:1600-1618. PMID: 31150625. PMCID: PMC6993574. doi: 10.1016/j.cell.2019.05.004
  3. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4:623-632. PMID: 30718848. doi: 10.1038/s41564-018-0337-x
  4. Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, et al. Mechanisms underlying microbial- mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019;101:246-259. PMID: 30522820. PMCID: PMC6645363. doi: 10.1016/j.neuron.2018.11.018
  5. Fülling C, Dinan TG, Cryan JF. Gut Microbe to Brain Signaling: What Happens in Vagus. Neuron. 2019;101:998-1002. PMID: 30897366. doi: 10.1016/j.neuron.2019.02.008
  6. Skolnick SD, Greig NH. Microbes and monoamines: potential neuropsychiatric consequences of dysbiosis. Trends Neurosci. 2019;42:151-163. PMID: 30795845. doi: 10.1016/j.tins.2018.12.005
  7. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The human microbiome and child growth - first 1000 days and beyond. Trends Microbiol. 2019;27:131-147. PMID: 30529020. doi: 10.1016/j.tim.2018.09.008
  8. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic immune system development in newborn children. Cell. 2018;174:1277-1292. PMID: 30142345. PMCID: PMC6108833. doi: 10.1016/j.cell.2018.06.045
  9. Jameson KG, Hsiao EY. Linking the gut microbiota to a brain neurotransmitter. Trends Neurosci. 2018;41:413-414. PMID: 29933773. PMCID: PMC7004240. doi: 10.1016/j.tins.2018.04.001
  10. Lobzhanidze G, Lordkipanidze T, Zhvania M, Japaridze N, Pochkidze N, Gasimov E, et al. Effect of propionic acid on the morphology of the amygdala in adolescent male rats and their behavior. Micron. 2019;125:102732. PMID: 31437571. doi: 10.1016/j.micron.2019.102732
  11. Pronovost GN, Hsiao EY. Perinatal interactions between the microbiome, immunity, and neurodevelopment. Immunity. 2019;50:18-36. PMID: 30650376. PMCID: PMC6447295. doi: 10.1016/j.immuni.2018.11.016
  12. Johnson KV, Foster KR. Why does the microbiome affect behaviour? Nat Rev Microbiol. 2018;16:647-655. PMID: 29691482. doi: 10.1038/s41579-018-0014-3
  13. Huo R, Zeng B, Zeng L, Cheng K, Li B, Luo Y, et al. Microbiota modulate anxiety-like behavior and endocrine abnormalities in hypothalamic-pituitary- adrenal axis. Front Cell Infect Microbiol. 2017;7:489. PMID: 29250490. PMCID: PMC5715198. doi: 10.3389/fcimb.2017.00489
  14. de Weerth C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci Biobehav Rev. 2017;83:458-471. PMID: 28918360. doi: 10.1016/j.neubiorev.2017.09.016
  15. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128-133. PMID: 29903615. PMCID: PMC6005194. doi: 10.1016/j.brainres.2018.03.015
  16. O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32-48. PMID: 25078296. doi: 10.1016/j.bbr.2014.07.027
  17. De Vadder F, Grasset E, Manneras Holm L, Karsenty G, Macpherson AJ. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci USA. 2018;115:6458-6463. PMID: 29866843. PMCID: PMC6016808. doi: 10.1073/pnas.1720017115
  18. Cianci R, Pagliari D, Piccirillo CA, Fritz JH, Gambassi G. The microbiota and immune system crosstalk in health and disease. Mediators Inflamm. 2018;2018:2912539. PMID: 29849485. PMCID: PMC5937375. doi: 10.1155/2018/2912539
  19. Underwood MD, Kassir SA, Bakalian MJ, Galfalvy H, Dwork AJ, Mann JJ, et al. Serotonin receptors and suicide, major depression, alcohol use disorder and reported early life adversity. Transl Psychiatry. 2018;8:279. PMID: 30552318. PMCID: PMC6294796. doi: 10.1038/s41398-018-0309-1
  20. Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, et al. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell. 2018;175:472-480. PMID: 30146164. PMCID: PMC6173627. doi: 10.1016/j.cell.2018.07.043
  21. Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391:1357-1366. doi: 10.1016/S0140-6736(17)32802-7
  22. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716-724. PMID: 29902437. doi: 10.1016/j.chom.2018.05.003
  23. Sigurdardottir HL, Kranz GS, Rami-Mark C, James GM, Vanicek T, Gryglewski G, et al. Association of norepinephrine transporter methylation with in vivo NET expression and hyperactivity- impulsivity symptoms in ADHD measured with PET. Mol Psychiatry. 2021 Mar;26(3):1009-1018. PMID: 31383926. PMCID: PMC7910214. doi: 10.1038/s41380-019-0461-x
  24. Lu J, Claud EC. Connection between gut microbiome and brain development in preterm infants. Dev Psychobiol. 2019;61:739-751. PMID: 30460694. PMCID: PMC6728148. doi: 10.1002/dev.21806
  25. Codagnone MG, Spichak S, O'Mahony SM, O'Leary OF, Clarke G, Stanton C, et al. Programming bugs: microbiota and the developmental origins of brain health and disease. Biol Psychiatry. 2019;85:150-163. PMID: 30064690. doi: 10.1016/j.biopsych.2018.06.014
  26. Ming X, Chen N, Ray C, Brewer G, Kornitzer J, Steer RA. A gut feeling: a hypothesis of the role of the microbiome in attention-deficit/hyperactivity disorders. Child Neurol Open. 2018;5:2329048X86799. PMID: 30023407. PMCID: PMC6047248. doi: 10.1177/2329048X18786799
  27. Tabouy L, Getselter D, Ziv O, Karpuj M, Tabouy T, Lukic I, et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav Immun. 2018;73:310-319. PMID: 29787855. doi: 10.1016/j.bbi.2018.05.015
  28. Selye H. The nature of stress. Basal Facts. 1985;7:3-11. PMID: 3854013. doi: 10.3109/01612848509009447
  29. Jafari M, Salehi M, Zardooz H, Rostamkhani F. Response of liver antioxidant defense system to acute and chronic physical and psychological stresses in male rats. EXCLI J. 2014;13:161-171.
  30. Moloney RD, Johnson AC, O'Mahony SM, Dinan TG, Greenwood-van Meerveld B, Cryan JF. Stress and the microbiota-gut-brain axis in visceral parelevance to irritable bowel syndrome. CNS Neurosci Ther. 2016;22:102-117. PMID: 26662472. PMCID: PMC6492884. doi: 10.1111/cns.12490
  31. Yang L, Zhao Y, Wang Y, Liu L, Zhang X, Li B, et al. The effects of psychological stress on depression. Curr Neuropharmacol. 2015;13:494-504. PMID: 26412069. PMCID: PMC4790405. doi: 10.2174/1570159X1304150831150507
  32. Mellman TA, Hipolito MMS. Sleep disturbances in the aftermath of trauma and posttraumatic stress disorder. CNS Spectr. 2006;11:611-615. PMID: 16871127. doi: 10.1017/S1092852900013663
  33. Rothbaum B, Foa E. Smallpox, October 1945. N Engl J Med. 2002;346:1329-1336. PMID: 11923486. doi: 10.1056/NEJM200204253461715
  34. Le CP, Nowell CJ, Kim-Fuchs C, Botteri E, Hiller JG, Ismail H, et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun. 2016;7:10634. PMID: 26925549. PMCID: PMC4773495. doi: 10.1038/ncomms10634
  35. Schnorr SL, Bachner HA. Integrative therapies in anxiety treatment. Yale J Biol Med. 2016;89:397-422.
  36. Househam AM, Peterson CT, Mills PJ, Chopra D. The effects of stress and meditation on the immune system, human microbiota, and epigenetics. Adv Mind Body Med. 2017;31:10-25. PMID: 29306937
  37. Wasilewski A, Zieli'nska M, Storr M, Fichna J. Beneficial Effects of Probiotics, Prebiotics, Synbiotics, and Psychobiotics in Inflammatory Bowel Disease: Inflamm. Bowel Dis. 2015;21:1674-1682. PMID: 25822014. doi: 10.1097/MIB.0000000000000364
  38. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28:203-209.
  39. Cryan JF, O'Mahony SM. The microbiome-gut-brain axis: From bowel to behavior: From bowel to behavior. Neurogastroenterol Motil. 2011;23:187-192. PMID: 21303428. doi: 10.1111/j.1365-2982.2010.01664.x
  40. Dinan TG, Cryan JF. Brain-Gut-Microbiota Axis and Mental Health. Psychosom Med. 2017;79:920-926. PMID: 28806201. doi: 10.1097/PSY.0000000000000519
  41. Du Y, Gao XR, Peng L, Ge JF. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon. 2020;6:e04097. PMID: 32529075. PMCID: PMC7276434. doi: 10.1016/j.heliyon.2020.e04097
  42. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26. PMID: 25651997. PMCID: PMC4315779. doi: 10.3402/mehd.v26.26191
  43. Foster JA, McVey Neufeld KA. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013;36:305-312. PMID: 23384445. doi: 10.1016/j.tins.2013.01.005
  44. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci. 2016;39:763-781. PMID: 27793434. PMCID: PMC5102282. doi: 10.1016/j.tins.2016.09.002
  45. Lou De Santis G, Kavvadia M, Abd Almajeed Abbaas Alwardat N, Bigioni G, Zeppieri C, Cascapera S, et al. Psychobiotics as integrative therapy for neuropsychiatric disorders with special emphasis on the microbiota-gut-brain axis. Biomed Prev. 2017;2:111.
  46. Vaghef-Mehrabany E, Maleki V, Behrooz M, Ranjbar F, Ebrahimi-Mameghani M. Can psychobiotics "mood" ify gut? An update systematic review of randomized controlled trials in healthy and clinical subjects, on anti-depressant effects of probiotics, prebiotics, and synbiotics. Clin Nutr. 2020;39:1395-1410. PMID: 31307840. doi: 10.1016/j.clnu.2019.06.004
  47. Farzi A, Fröhlich EE, Holzer P. Gut Microbiota and the Neuroendocrine System. Neurotherapeutics. 2018;15:5-22. PMID: 29380303. PMCID: PMC5794709. doi: 10.1007/s13311-017-0600-5
  48. Ait-Belgnaoui A, Colom A, Braniste V, Ramalho L, Marrot A, Cartier C, et al. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil. 2014;26:510-520. PMID: 24372793. doi: 10.1111/nmo.12295
  49. Andersson H, Tullberg C, Ahrné S, Hamberg K, Lazou Ahrén I, Molin G, et al. Oral Administration of Lactobacillus plantarum 299v Reduces Cortisol Levels in Human Saliva during Examination Induced Stress: A Randomized, Double-Blind Controlled Trial. Int J Microbiol. 2016;2016:8469018. PMID: 28101105. PMCID: PMC5217173. doi: 10.1155/2016/8469018
  50. Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell. 2016;167(4):1125-1136.e8. PMID: 27814509. PMCID: PMC5131922. doi: 10.1016/j.cell.2016.10.020
  51. Rea K, Dinan TG, Cryan JF. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol Stress. 2016;4:23-33. PMID: 27981187. PMCID: PMC5146205. doi: 10.1016/j.ynstr.2016.03.001
  52. Obermeier B, Verma A, Ransoho RM. The blood-brain barrier. Handb Clin Neurol. 2016;133:39-59. PMID: 27112670. doi: 10.1016/B978-0-444-63432-0.00003-7
  53. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015 Jul;18(7):965-77. PMID: 26030851. PMCID: PMC5528863. doi: 10.1038/nn.4030
  54. Leclercq S, Mian FM, Stanisz AM, Bindels LB, Cambier E, Ben-Amram H, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun. 2017 Apr 4;8:15062. PMID: 28375200. PMCID: PMC5382287. doi: 10.1038/ncomms15062
  55. Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C. Bacterial neuroactive compounds produced by psychobiotics. Adv Exp Med Biol. 2014;817:221-39. PMID: 24997036. doi: 10.1007/978-1-4939-0897-4_10
  56. Israelyan N, Margolis KG. Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacol Res. 2018;132:1-6. PMID: 29614380. PMCID: PMC6368356. doi: 10.1016/j.phrs.2018.03.020
  57. Wu H, Denna TH, Storkersen JN, Gerriets VA. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol Res. 2019;140:100-114. PMID: 29953943. doi: 10.1016/j.phrs.2018.06.015
  58. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell. 2015 Apr 9;161(2):264-76. PMID: 25860609. PMCID: PMC4393509. doi: 10.1016/j.cell.2015.02.047
  59. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128-133. PMID: 29903615. PMCID: PMC6005194. doi: 10.1016/j.brainres.2018.03.015
  60. Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology. 2017;112:399-412. PMID: 27392632. doi: 10.1016/j.neuropharm.2016.07.002
  61. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013 Jun;18(6):666-73. PMID: 22688187. doi: 10.1038/mp.2012.77
  62. Sarkar C, Chakroborty D, Basu S. Neurotransmitters as Regulators of Tumor Angiogenesis and Immunity: The Role of Catecholamines. J Neuroimmune Pharmacol. 2013;8:7-14. PMID: 22886869. PMCID: PMC3869381. doi: 10.1007/s11481-012-9395-7
  63. Kobayashi K. Role of Catecholamine Signaling in Brain and Nervous System Functions: New Insights from Mouse Molecular Genetic Study. J Investig Dermatol Symp Proc. 2001;6:115-121. PMID: 11764279. doi: 10.1046/j.0022-202x.2001.00011.x
  64. Xing B, Li YC, Gao WJ. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex. Brain Res. 2016;1641:217-233. PMID: 26790349. PMCID: PMC4879059. doi: 10.1016/j.brainres.2016.01.005
  65. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol. 2012 Dec 1;303(11):G1288-95. PMID: 23064760. doi: 10.1152/ajpgi.00341.2012
  66. Sudo N. Biogenic Amines: Signals Between Commensal Microbiota and Gut Physiology. Front Endocrinol (Lausanne). 2019 Jul 31;10:504. PMID: 31417492. PMCID: PMC6685489. doi: 10.3389/fendo.2019.00504
  67. Samardzic J, Jadzic D, Hencic B, Jancic J, Strac DS. Introductory chapter: GABA/Glutamate balance: A key for normal brain functioning. In: GABA and Glutamate-New Developments in Neurotransmission Research. Samardzic J, Ed. London UK; 2018. doi: 10.5772/intechopen.74023
  68. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M. Synthesis of -Aminobutyric Acid by Lactic Acid Bacteria Isolated from a Variety of Italian Cheeses. Appl Environ Microbiol. 2007 Nov;73(22):7283-90. PMID: 17890341. PMCID: PMC2168214. doi: 10.1128/AEM.01064-07
  69. Valenzuela JA, Flórez AB, Vázquez L, Vasek OM, Mayo B. Production of -aminobutyric acid (GABA) by lactic acid bacteria strains isolated from traditional, starter-free dairy products made of raw milk. Benef Microbes. 2019 May 28;10(5):579-587. PMID: 31122043. doi: 10.3920/BM2018.0176
  70. Yunes RA, Poluektova EU, Dyachkova MS, Klimina KM, Kovtun AS, Averina OV, et al. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe. 2016 Dec;42:197-204. PMID: 27794467. doi: 10.1016/j.anaerobe.2016.10.011
  71. Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. 2019 Mar;4(3):396-403. PMID: 30531975. PMCID: PMC6384127. doi: 10.1038/s41564-018-0307-3
  72. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior. Neuron. 2012;76:116-129. PMID: 23040810. PMCID: PMC3466476. doi: 10.1016/j.neuron.2012.08.036
  73. Roshchina VV. Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In: Microbial Endocrinology. Lyte M, Freestone PPE, Eds. NY USA: Springer; 2010. p. 17-52. doi: 10.1007/978-1-4419-5576-0_2
  74. Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol. 2014;817:115-33. PMID: 24997031. doi: 10.1007/978-1-4939-0897-4_5
  75. Bonaz B, Bazin T, Pellissier S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci. 2018 Feb 7;12:49. PMID: 29467611. PMCID: PMC5808284. doi: 10.3389/fnins.2018.00049
  76. Maqsood R, Stone TW. The Gut-Brain Axis, BDNF, NMDA and CNS Disorders. Neurochem Res. 2016;41:2819-2835. PMID: 27553784. doi: 10.1007/s11064-016-2039-1
  77. Bistoletti M, Caputi V, Baranzini N, Marchesi N, Filpa V, Marsilio I, et al. Antibiotic treatment-induced dysbiosis di_erently a_ects BDNF and TrkB expression in the brain and in the gut of juvenile mice. PLoS ONE. 2019 Feb 22;14(2):e0212856. PMID: 30794676. PMCID: PMC6386304. doi: 10.1371/journal.pone.0212856
  78. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013 Sep;54(9):2325-40. PMID: 23821742. PMCID: PMC3735932. doi: 10.1194/jlr.R036012
  79. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189-200. PMID: 26963409. PMCID: PMC4939913. doi: 10.1080/19490976.2015.1134082
  80. Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). 2020 Jan 31;11:25. PMID: 32082260. PMCID: PMC7005631. doi: 10.3389/fendo.2020.00025