ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 3 of 44
Up
УЖМБС 2022, 7(2): 18–26
https://doi.org/10.26693/jmbs07.02.018
Medicine. Reviews

The Role of Genes and Skin Microbiome in the Development of Seborrheic Dermatitis

Vysochanska V. V., Koval G. M.
Abstract

The purpose of the study was to identify specific links between genotypic and phenotypic changes in the body that can lead to inflammatory skin diseases and dysbiosis. Materials and methods. Medline / PubMed, Embase, Web of Science databases were searched and research studies related to inflammatory skin diseases: immunity, genetics, epigenetics, epidermal barrier, skin microbiome, etc. were analyzed. The results of microbiome studies based on cultivation methods were excluded from the study. Results and discussion. Inflammatory skin diseases often lead to physical or psychological disorders, but the cause of these diseases is still unclear. Pathogenesis of inflammatory skin diseases includes heredity, environmental impact, immunity changes, epidermal barrier dysfunction, mental disorders, infections, and more. A better understanding of the role of microbiome, genetic abnormalities and phenotypic changes may help to predict the occurrence of seborrheic dermatitis in humans. The human microbiome is directly involved in the formation of host immunity. In particular, skin residents maintain the stability of the skin barrier, regulate inflammation and the immune response. Mutualistic symbioses provide homeostasis of the human-host relationship and the microbiome. However, under the influence of the external environment, genetic and physiological changes, the balance of the microbial community and man is disturbed, which can negatively regulate the condition of the host and cause disease. Most symbiotic skin microbiota coexists peacefully with the host and become pathogenic only under certain conditions. The transition from symbiosis to pathogenicity is a complex process, because the skin is well resistant to aggressive factors. Potential attackers must induce gene expression to enable adhesion, invasion, and avoidance of the immune response. The skin microbiome induces inflammation and skin healing. Also it may change its qualitative and quantitative composition to adapt to existing inflammatory conditions. Conclusion. Microorganisms grown under conditions of homeostasis perfectly interact with the human-host in a healthy symbiotic relationship. Under conditions of impaired immune system response, abnormal gene expression or dysfunction of the skin barrier microbiome residents use a variety of defense mechanisms to survive, that plays an important role in the pathogenesis of inflammatory skin diseases. Understanding the species composition of the microbiome, its dynamic changes and effects on human skin makes it possible to predict the possible occurrence of seborrheic dermatitis, control inflammation and prevent exacerbations

Keywords: seborrheic dermatitis, microbiome, Malassezia, immunity, metagenome

Full text: PDF (Ukr) 287K

References
  1. Wang L, Clavaud C, Bar-Hen A, Cui M, Gao J, Liu Y, et al. Characterization of the major bacterial-fungal populations colonizing dandruff scalps in Shanghai, China, shows microbial disequilibrium. Exp Dermatol. 2015 May;24(5):398-400. https://www.ncbi.nlm.nih.gov/pubmed/25739873. https://doi.org/10.1111/exd.12684
  2. Park HK, Ha MH, Park SG, Kim MN, Kim BJ, Kim W. Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-afflicted human scalps. PLoS One. 2012;7(2):e32847. https://www.ncbi.nlm.nih.gov/pubmed/22393454. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3290624. https://doi.org/10.1371/journal.pone.0032847
  3. Xu Z, Wang Z, Yuan C, Liu X, Yang F, Wang T, et al. Dandruff is associated with the conjoined interactions between host and microorganisms. Sci Rep. 2016 May 12;6:24877. https://www.ncbi.nlm.nih.gov/pubmed/27172459. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc4864613. https://doi.org/10.1038/srep24877
  4. Park T, Kim HJ, Myeong NR, Lee HG, Kwack I, Lee J, et al. Collapse of human scalp microbiome network in dandruff and seborrhoeic dermatitis. Exp Dermatol. 2017 Sep;26(9):835-838. https://www.ncbi.nlm.nih.gov/pubmed/28094891. https://doi.org/10.1111/exd.13293
  5. Saxena R, Mittal P, Clavaud C, Dhakan DB, Hegde P, Veeranagaiah MM, et al. Comparison of Healthy and Dandruff Scalp Microbiome Reveals the Role of Commensals in Scalp Health. Front Cell Infect Microbiol. 2018 Oct 4;8:346. https://www.ncbi.nlm.nih.gov/pubmed/30338244. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6180232. https://doi.org/10.3389/fcimb.2018.00346
  6. Lin Q, Panchamukhi A, Li P, Shan W, Zhou H, Hou L, et al. Malassezia and Staphylococcus dominate scalp microbiome for seborrheic dermatitis. Bioprocess Biosyst Eng. 2021 May;44(5):965-975. https://www.ncbi.nlm.nih.gov/pubmed/32219537. https://doi.org/10.1007/s00449-020-02333-5
  7. Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and Atopic Dermatitis: A Complex and Evolving Relationship. Trends Microbiol. 2018 Jun;26(6):484-497. https://www.ncbi.nlm.nih.gov/pubmed/29233606. https://doi.org/10.1016/j.tim.2017.11.008
  8. Williams MR, Nakatsuji T, Sanford JA, Vrbanac AF, Gallo RL. Staphylococcus aureus Induces Increased Serine Protease Activity in Keratinocytes. J Invest Dermatol. 2017 Feb;137(2):377-384. https://www.ncbi.nlm.nih.gov/pubmed/27765722. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5258850. https://doi.org/10.1016/j.jid.2016.10.008
  9. Katsuta Y, Iida T, Hasegawa K, Inomata S, Denda M. Function of oleic acid on epidermal barrier and calcium influx into keratinocytes is associated with N-methyl D-aspartate-type glutamate receptors. Br J Dermatol. 2009 Jan;160(1):69-74. https://www.ncbi.nlm.nih.gov/pubmed/18808414. https://doi.org/10.1111/j.1365-2133.2008.08860.x
  10. Georgountzou A, Papadopoulos NG. Postnatal Innate Immune Development: From Birth to Adulthood. Front Immunol. 2017 Aug 11;8:957. HTTPS://WWW.NCBI.NLM.NIH.GOV/PUBMED/28848557. HTTPS://WWW.NCBI.NLM.NIH.GOV/PMC/ARTICLES/PMC5554489. https://doi.org/10.3389/fimmu.2017.00957
  11. Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev. 2019 Jul 31;32(4):e00034-18. https://www.ncbi.nlm.nih.gov/pubmed/31366611. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6750136. https://doi.org/10.1128/CMR.00034-18
  12. Sanchez Rodriguez R, Pauli ML, Neuhaus IM, Yu SS, Arron ST, Harris HW, et al. Memory regulatory T cells reside in human skin. J Clin Invest. 2014 Mar;124(3):1027-36. https://www.ncbi.nlm.nih.gov/pubmed/24509084. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3934172. https://doi.org/10.1172/JCI72932
  13. Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol. 2012 Jun 25;12(7):503-16. https://www.ncbi.nlm.nih.gov/pubmed/22728527. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3563335. https://doi.org/10.1038/nri3228
  14. Mittermann I, Wikberg G, Johansson C, Lupinek C, Lundeberg L, Crameri R, et al. IgE Sensitization Profiles Differ between Adult Patients with Severe and Moderate Atopic Dermatitis. PLoS One. 2016 May 26;11(5):e0156077. https://www.ncbi.nlm.nih.gov/pubmed/27228091. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc4881900. https://doi.org/10.1371/journal.pone.0156077
  15. Sparber F, LeibundGut-Landmann S. Assessment of Immune Responses to Fungal Infections: Identification and Characterization of Immune Cells in the Infected Tissue. Methods Mol Biol. 2017;1508:167-182. https://www.ncbi.nlm.nih.gov/pubmed/27837503. https://doi.org/10.1007/978-1-4939-6515-1_8
  16. Tateno H, Ohnishi K, Yabe R, Hayatsu N, Sato T, Takeya M, et al. Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J Biol Chem. 2010 Feb 26;285(9):6390-400. https://www.ncbi.nlm.nih.gov/pubmed/20026605. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc2825434. https://doi.org/10.1074/jbc.M109.041863
  17. Georgountzou A, Papadopoulos NG. Postnatal Innate Immune Development: From Birth to Adulthood. Front Immunol. 2017 Aug 11;8:957. https://www.ncbi.nlm.nih.gov/pubmed/28848557. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5554489. https://doi.org/10.3389/fimmu.2017.00957
  18. Vlachos C, Schulte BM, Magiatis P, Adema GJ, Gaitanis G. Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived dendritic cells. Br J Dermatol. 2012 Sep;167(3):496-505. https://www.ncbi.nlm.nih.gov/pubmed/22533375. https://doi.org/10.1111/j.1365-2133.2012.11014.x
  19. Sparber F, LeibundGut-Landmann S. Interleukin-17 in Antifungal Immunity. Pathogens. 2019 Apr 22;8(2):54. https://www.ncbi.nlm.nih.gov/pubmed/31013616. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6630750. https://doi.org/10.3390/pathogens8020054
  20. Gladiator A, LeibundGut-Landmann S. Innate lymphoid cells: new players in IL-17-mediated antifungal immunity. PLoS Pathog. 2013;9(12):e1003763. https://www.ncbi.nlm.nih.gov/pubmed/24348243. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3861514. https://doi.org/10.1371/journal.ppat.1003763
  21. Metze D, Kersten A, Jurecka W, Gebhart W. Immunoglobulins coat microorganisms of skin surface: a comparative immunohistochemical and ultrastructural study of cutaneous and oral microbial symbionts. J Invest Dermatol. 1991 Apr;96(4):439-45. https://www.ncbi.nlm.nih.gov/pubmed/2007782. https://doi.org/10.1111/1523-1747.ep12469908
  22. Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol. 2009 Sep;124(3 Suppl 2):R13-8. https://www.ncbi.nlm.nih.gov/pubmed/19720207. https://doi.org/10.1016/j.jaci.2009.07.014
  23. Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015 Apr 2;520(7545):104-8. https://www.ncbi.nlm.nih.gov/pubmed/25539086. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc4667810. https://doi.org/10.1038/nature14052
  24. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009 Dec;15(12):1377-82. https://www.ncbi.nlm.nih.gov/pubmed/19966777. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc2880863. https://doi.org/10.1038/nm.2062
  25. Chieosilapatham P, Ogawa H, Niyonsaba F. Current insights into the role of human β-defensins in atopic dermatitis. Clin Exp Immunol. 2017 Nov;190(2):155-166. https://www.ncbi.nlm.nih.gov/pubmed/28708318. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5629447. https://doi.org/10.1111/cei.13013
  26. Chehoud C, Rafail S, Tyldsley AS, Seykora JT, Lambris JD, Grice EA. Complement Modulates the cutaneous microbiome and inflammatory milieu. Proc Natl Acad Sci U S A. 2013;110:15061-15066. https://www.ncbi.nlm.nih.gov/pubmed/23980152. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3773768. https://doi.org/10.1073/pnas.1307855110
  27. de Jong MA, Vriend LE, Theelen B, Taylor ME, Fluitsma D, Boekhout T, et al. C-type lectin Langerin is a beta-glucan receptor on human Langerhans cells that recognizes opportunistic and pathogenic fungi. Mol Immunol. 2010 Mar;47(6):1216-25. https://www.ncbi.nlm.nih.gov/pubmed/20097424. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc2837148. https://doi.org/10.1016/j.molimm.2009.12.016
  28. Baroni A, Orlando M, Donnarumma G, Farro P, Iovene MR, Tufano MA, et al. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res. 2006 Jan;297(7):280-8. https://www.ncbi.nlm.nih.gov/pubmed/16283346. https://doi.org/10.1007/s00403-005-0594-4
  29. Esser C, Bargen I, Weighardt H, Haarmann-Stemmann T, Krutmann J. Functions of the aryl hydrocarbon receptor in the skin. Semin Immunopathol. 2013 Nov;35(6):677-91. https://www.ncbi.nlm.nih.gov/pubmed/23949496. https://doi.org/10.1007/s00281-013-0394-4
  30. Eyerich S, Eyerich K, Traidl-Hoffmann C, Biedermann T. Cutaneous Barriers and Skin Immunity: Differentiating A Connected Network. Trends Immunol. 2018 Apr;39(4):315-327. https://www.ncbi.nlm.nih.gov/pubmed/29551468. https://doi.org/10.1016/j.it.2018.02.004
  31. Sanford JA, Gallo RL. Functions of the skin microbiota in health and disease. Semin Immunol. 2013 Nov 30;25(5):370-7. https://www.ncbi.nlm.nih.gov/pubmed/24268438. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc4219649. https://doi.org/10.1016/j.smim.2013.09.005
  32. Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013 Jul;26(3):422-47. https://www.ncbi.nlm.nih.gov/pubmed/23824366. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3719495. https://doi.org/10.1128/CMR.00104-12
  33. Furue M, Chiba T, Tsuji G, Ulzii D, Kido-Nakahara M, Nakahara T, et al. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol Int. 2017 Jul;66(3):398-403. https://www.ncbi.nlm.nih.gov/pubmed/28057434. https://doi.org/10.1016/j.alit.2016.12.002
  34. Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Adv Nutr. 2019 Jan 1;10(suppl_1):S17-S30. https://www.ncbi.nlm.nih.gov/pubmed/30721960. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6363528. https://doi.org/10.1093/advances/nmy078
  35. Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Adv Nutr. 2019 Jan 1;10(suppl_1):S17-S30. https://www.ncbi.nlm.nih.gov/pubmed/30721960. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6363528. https://doi.org/10.1093/advances/nmy078
  36. Sanford JA, Zhang LJ, Williams MR, Gangoiti JA, Huang CM, Gallo RL. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci Immunol. 2016 Oct 28;1(4):eaah4609. https://www.ncbi.nlm.nih.gov/pubmed/28783689. https://doi.org/10.1126/sciimmunol.aah4609
  37. Sanford JA, O'Neill AM, Zouboulis CC, Gallo RL. Short-Chain Fatty Acids from Cutibacterium acnes Activate Both a Canonical and Epigenetic Inflammatory Response in Human Sebocytes. J Immunol. 2019 Mar 15;202(6):1767-1776. https://www.ncbi.nlm.nih.gov/pubmed/30737272. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7251550. https://doi.org/10.4049/jimmunol.1800893
  38. Sawada Y, Nakatsuji T, Dokoshi T, Kulkarni NN, Liggins MC, Sen G, Gallo RL. Cutaneous innate immune tolerance is mediated by epigenetic control of MAP2K3 by HDAC8/9. Sci Immunol. 2021 May 21;6(59):eabe1935. https://www.ncbi.nlm.nih.gov/pubmed/34021025. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc8363943. https://doi.org/10.1126/sciimmunol.abe1935
  39. Boisson B, Wang C, Pedergnana V, Wu L, Cypowyj S, Rybojad M, et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity. 2013 Oct 17;39(4):676-86. https://www.ncbi.nlm.nih.gov/pubmed/24120361. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3873857. https://doi.org/10.1016/j.immuni.2013.09.002
  40. Evans DI, Holzel A, MacFarlane H. Yeast opsonization defect and immunoglobulin deficiency in severe infantile dermatitis (Leiner's disease). Arch Dis Child. 1977 Sep;52(9):691-5. https://www.ncbi.nlm.nih.gov/pubmed/144462. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc1544726. https://doi.org/10.1136/adc.52.9.691
  41. Birnbaum RY, Zvulunov A, Hallel-Halevy D, Cagnano E, Finer G, Ofir R, et al. Seborrhea-like dermatitis with psoriasiform elements caused by a mutation in ZNF750, encoding a putative C2H2 zinc finger protein. Nat Genet. 2006 Jul;38(7):749-51. https://www.ncbi.nlm.nih.gov/pubmed/16751772. https://doi.org/10.1038/ng1813
  42. Boxer LD, Barajas B, Tao S, Zhang J, Khavari PA. ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes Dev. 2014 Sep 15;28(18):2013-26. https://www.ncbi.nlm.nih.gov/pubmed/25228645. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc4173152. https://doi.org/10.1101/gad.246579.114
  43. Sanders MGH, Pardo LM, Uitterlinden AG, Smith AM, Ginger RS, Nijsten T. The Genetics of Seborrheic Dermatitis: A Candidate Gene Approach and Pilot Genome-Wide Association Study. J Invest Dermatol. 2018 Apr;138(4):991-993. https://www.ncbi.nlm.nih.gov/pubmed/29203360. https://doi.org/10.1016/j.jid.2017.11.020
  44. Sun L, Gu S, Li X, Sun Y, Zheng D, Yu K, et al. [Identification of a novel human MAST4 gene, a new member of the microtubule associated serine-threonine kinase family]. Mol Biol. 2006 Sep-Oct;40(5):808-15. https://www.ncbi.nlm.nih.gov/pubmed/17086981. https://doi.org/10.1134/S0026893306050062
  45. Garza LA, Yang CC, Zhao T, Blatt HB, Lee M, He H, et al. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J Clin Invest. 2011 Feb;121(2):613-22. https://www.ncbi.nlm.nih.gov/pubmed/21206086. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3026732. https://doi.org/10.1172/JCI44478
  46. Bidaux G, Borowiec AS, Gordienko D, Beck B, Shapovalov GG, Lemonnier L, et al. Epidermal TRPM8 channel isoform controls the balance between keratinocyte proliferation and differentiation in a cold-dependent manner. Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):E3345-54. https://www.ncbi.nlm.nih.gov/pubmed/26080404. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc4491737. https://doi.org/10.1073/pnas.1423357112
  47. Saxena R, Mittal P, Clavaud C, Dhakan DB, Hegde P, Veeranagaiah MM, et al. Comparison of Healthy and Dandruff Scalp Microbiome Reveals the Role of Commensals in Scalp Health. Front Cell Infect Microbiol. 2018 Oct 4;8:346. https://www.ncbi.nlm.nih.gov/pubmed/30338244. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6180232. https://doi.org/10.3389/fcimb.2018.00346
  48. Calus ST, Ijaz UZ, Pinto AJ. NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform. Gigascience. 2018 Dec 1;7(12):giy140. https://www.ncbi.nlm.nih.gov/pubmed/30476081. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6298384. https://doi.org/10.1093/gigascience/giy140
  49. Park T, Kim HJ, Myeong NR, Lee HG, Kwack I, Lee J, et al. Collapse of human scalp microbiome network in dandruff and seborrhoeic dermatitis. Exp Dermatol. 2017 Sep;26(9):835-838. https://www.ncbi.nlm.nih.gov/pubmed/28094891. https://doi.org/10.1111/exd.13293
  50. Ianiri G, Heitman J. Approaches for Genetic Discoveries in the Skin Commensal and Pathogenic Malassezia Yeasts. Front Cell Infect Microbiol. 2020 Aug 7;10:393. https://www.ncbi.nlm.nih.gov/pubmed/32850491. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7426719. https://doi.org/10.3389/fcimb.2020.00393
  51. Lin Q, Panchamukhi A, Li P, Shan W, Zhou H, Hou L, et al. Malassezia and Staphylococcus dominate scalp microbiome for seborrheic dermatitis. Bioprocess Biosyst Eng. 2021 May;44(5):965-975. https://www.ncbi.nlm.nih.gov/pubmed/32219537. https://doi.org/10.1007/s00449-020-02333-5
  52. Zeeuwen PLJM, Boekhorst J, Ederveen THA, Kleerebezem M, Schalkwijk J, van Hijum SAFT, et al. Reply to Meisel et al. J Invest Dermatol. 2017 Apr;137(4):961-962. https://www.ncbi.nlm.nih.gov/pubmed/27887953. https://doi.org/10.1016/j.jid.2016.11.013
  53. Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, et al. Skin Microbiome Surveys Are Strongly Influenced by Experimental Design. J Invest Dermatol. 2016 May;136(5):947-956. https://www.ncbi.nlm.nih.gov/pubmed/26829039. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc4842136. https://doi.org/10.1016/j.jid.2016.01.016