ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 6 of 50
Up
УЖМБС 2021, 6(3): 53–64
https://doi.org/10.26693/jmbs06.03.053
Medicine. Reviews

The Effect of Tear Film Quality on Protective Properties against SARS-CoV-2 and on Further Risks of Infection in Dry Eye Disease

Protsenko E. S., Remnyova N. A., Panchenko N. V.
Abstract

SARS-CoV-2 is a new coronavirus causing global pandemic COVID-19 throughout the world, the clinical manifestations of which may include not only respiratory syndrome and systemic manifestations, but also eye symptoms. The purpose of the study. This study processed and presented to the scientific community the latest scientific evidence from the world literature regarding the effect of tear film quality on protective properties against SARS-CoV-2 and on further risks of COVID-19 infection in dry eye disease. Many studies have proven the presence of ACE2 as well as TMPRSS2 expression in the conjunctival and corneal epithelium and detection of SARS-CoV-2 RNA in the tear fluid of infected patients, which indicates the ocular tissue tropism to the virus and its possible transmission through the ocular surface. The detection of SARS-CoV-2 in conjunctival or tear samples may depend on viral load and secretion, as well as on sampling time during the course of the disease. It has been suggested that SARS-CoV-2 is prone to exist on the surface of the eye in the early stages of conjunctivitis, and the viral load decreases after a few days. However, cases of virus detection without conjunctivitis may indicate that SARS-CoV-2 can cause latent and asymptomatic infection. With the introduction of protective anti-epidemic measures such as protective masks, the rapid increase and progression of dry eye disease has begun, which leads to decreased ocular surface immune mechanisms, and could potentially increase the risks of SARS-CoV-2 virus transmission. The mechanisms of protection of the healthy ocular surface and possible ways to combat SARS-CoV-2 were reviewed. And the potential causes of increased ocular surface infections during a pandemic were also shown. Through wearing of protective masks, there is additional dispersion of air around the eyes and accelerated evaporation of tear fluid with its thinning and rupture, which contributes to the progression of the prevalence of dry eye disease. The information confirmed by research has already appeared in the literature. This ocular surface condition has been defined by the term "MADE" – dry eye associated with wearing a mask. Dry eye disease, in turn, is a multifactorial ocular surface disease that results in tear film instability, hyperosmolar stress, and a cascade of inflammatory responses. This initiates ocular surface damage, impaired immune status, pathological apoptosis of conjunctival and corneal cells, and loss of basic protective function. Conclusion. Thus, given the obvious decrease in the immune defense mechanisms of the ocular surface in dry eye disease, which is a vulnerable place for virus penetration, this area deserves further in-depth study

Keywords: tear film, dry eye, conjunctiva, COVID-19, coronavirus

Full text: PDF (Ukr) 369K

References
  1. Huang С, Wang Y, Li X, Ren L, Zhao J, Hu Y , et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 15-21 February; 395(10223): 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  2. WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). [Internet]. Feb 18, 2020. Available from: https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19)
  3. Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine. 2020 Sep; 133: 155151. https://doi.org/10.1016/j.cyto.2020.155151
  4. Al-Ani F, Chehade S, Lazo-Langner A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb Res. 2020 Aug; 192: 152–160. https://doi.org/10.1016/j.thromres.2020.05.039
  5. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020 Jun; 220: 1–13. https://doi.org/10.1016/j.trsl.2020.04.007
  6. Loffredo L, Pacella F, Pacella E, Tiscione G, Oliva A, Violi F. Conjunctivitis and COVID‐19: A meta‐analysis. J Med Virol. 2020 May 22: 1413-1414. https://doi.org/10.1002/jmv.25938
  7. Hong N, Yu W, Xia J, Shen Y, Yap M, Han W. Evaluation of ocular symptoms and tropism of SARS‐CoV‐2 in patients confirmed with COVID‐19. Acta Ophthalmol. 2020 Apr 26: 10.1111/aos.14445. https://doi.org/10.1111/aos.14445
  8. Xuan D. Wang Guangfa of Peking University Hospital disclosed the treatment situation on Weibo, suspected of causing infection without wearing goggles. bjnews.com.cn. [Internet]. 2020 Jan 23. Available from: http://www.bjnews.com.cn/news/2020/01/23/678189.html
  9. Cheema M, Aghazadeh H, Nazarali S, Ting A, Hodges J, McFarlane A, et al. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19). Can J Ophthalmol. 2020 Aug; 55(4): e125–e129. https://doi.org/10.1016/j.jcjo.2020.03.003
  10. Khavandi S, Tabibzadeh E, Naderan M, Shoard S. Corona virus disease-19 (COVID-19) presenting as conjunctivitis: atypically high-risk during a pandemic. Cont Lens Anterior Eye. 2020 Jun; 43(3): 211–212. https://doi.org/10.1016/j.clae.2020.04.010
  11. Daruich A, Martin D, Bremond-Gignac D. Ocular manifestation as first sign of Coronavirus Disease 2019 (COVID-19): Interest of telemedicine during the pandemic context. J Fr Ophtalmol. 2020 May; 43(5): 389–391. https://doi.org/10.1016/j.jfo.2020.04.002
  12. Scalinci SZ, Trovato Battagliola E. Conjunctivitis can be the only presenting sign and symptom of COVID-19. IDCases. 2020; 20: e00774. https://doi.org/10.1016/j.idcr.2020.e00774
  13. Schnichels S, Rohrbach JM, Bayyoud T, Thaler S, Ziemssen F, Hurst J. Kann SARS-CoV-2 das Auge infizieren? – Ein Überblick über den Rezeptorstatus in okularem Gewebe. Ophthalmologe. 2020 Jun 24: 1–4. https://doi.org/10.1007/s00347-020-01160-z
  14. Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020 April 26:681–687. https://doi.org/10.1038/s41591-020-0868-6
  15. Zhang BN, Wang Q, Liu T, Dou SQ, Qi X, Jiang H, et al. A special on epidemic prevention and control: analysis on expression of 2019-nCoV related ACE2 and TMPRSS2 in eye tissues. Zhonghua Yan Ke Za Zhi. 2020 Jun 11; 56 (6): 438-446. https://doi.org/10.3760/cma.j.cn112142-20200310-00170
  16. Zhang X, Chen X, Chen L, Deng C. The evidence of SARS-CoV-2 infection on ocular surface. Ocul Surf. 2020 Jul; 18(3): 360–362. https://doi.org/10.1016/j.jtos.2020.03.010
  17. Xia J, Tong J, Liu M, Shen Y, Guo D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol. 2020 Mar; 92(6): 589-594. https://doi.org/10.1002/jmv.25725
  18. Wu P, Duan F, Luo C, Liu Q, Qu X, Liang L, et al. Characteristics of Ocular Findings of Patients With Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020 May; 138(5): 575-578. https://doi.org/10.1001/jamaophthalmol.2020.1291
  19. Aiello F, Gallo Afflitto G, Mancino R, Li JP, Cesareo M, Giannini C, et al. Coronavirus disease 2019 (SARS-CoV-2) and colonization of ocular tissues and secretions: a systematic review. Eye (Lond). 2020 May 18. 34: 1206-1211. https://doi.org/10.1038/s41433-020-0926-9
  20. Uchino M, Yokoi N, Uchino Y, Dogru M, Kawashima M, Komuro A, et al. Prevalence of Dry Eye Disease and its Risk Factors in Visual Display Terminal Users: The Osaka Study. American journal of ophthalmology. 2013; 156(4): 759-766. https://doi.org/10.1016/j.ajo.2013.05.040
  21. Nakamura S, Kinoshita S, Yokoi N, Ogawa Y, Shibuya M, Nakashima H, et al. Lacrimal Hypofunction as a New Mechanism of Dry Eye in Visual Display Terminal Users. PLoS One. 2010; 5(6): e11119. https://doi.org/10.1371/journal.pone.0011119
  22. Tsubota K, Nakamori K. Dry eyes and video display terminals. N Engl J Med. 1993 Feb 25; 328(8): 584. https://doi.org/10.1056/nejm199302253280817
  23. Greenhalgh T, Schmid MB, Czypionka T, Bassler D, Gruer L. Face masks for the public during the covid-19 crisis. BMJ 2020; 369: m1435. https://doi.org/10.1136/bmj.m1435
  24. Leung NHL, Chu DKW, Shiu EYC, Chan HK, McDevitt JJ, Hau BJP, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med. 2020; 26: 676–680. https://doi.org/10.1038/s41591-020-0843-2
  25. Corrales RM, de Paiva CS, Li DQ, Farley WJ, Henriksson JT, Bergmanson JPG, et al. Entrapment of Conjunctival Goblet Cells by Desiccation-Induced Cornification. Invest Ophthalmol Vis Sci. 2011 May; 52(6): 3492–3499. https://doi.org/10.1167/iovs.10-5782
  26. Pelegrino FCA, Pflugfelder SC, de Paiva CS. Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium in mice via a c-jun N-terminal kinase 2 (JNK2) pathway. Exp Eye Res. 2012 Jan; 94(1): 150–156. https://doi.org/10.1016/j.exer.2011.11.022
  27. Giannaccare G, Vaccaro S , Mancini A, Scorcia V. Dry eye in the COVID-19 era: how the measures for controlling pandemic might harm ocular surface. Graefes Arch Clin Exp Ophthalmol. 2020 Nov; 258(11): 2567-2568. https://doi.org/10.1007/s00417-020-04808-3
  28. Zhang X, Jeyalatha MV, Qu Y, He X, Shangkun Ou S, Bu J, et al. Dry Eye Management: Targeting the Ocular Surface Microenvironment. Int J Mol Sci. 2017 Jul; 18(7): 1398. https://doi.org/10.3390/ijms18071398
  29. Zhang X, Volpe EA, Gandhi NB, Schaumburg CS, Siemasko KF, Pangelinan SB, et al. NK Cells Promote Th-17 Mediated Corneal Barrier Disruption in Dry Eye. PLoS One. 2012; 7(5): e36822. https://doi.org/10.1371/journal.pone.0036822
  30. Jameson JM, Sharp LL, Witherden DA, Havran WL. Regulation of skin cell homeostasis by gamma delta T cells. Front Biosci. 2004 Sep 1; 9: 2640-51. https://doi.org/10.2741/1423
  31. MacLeod AS, Havran WL. Functions of skin-resident γδ T cells. Cell Mol Life Sci. 2011 Jul; 68(14): 2399–2408. https://doi.org/10.1007/s00018-011-0702-x
  32. Dua HS, Gomes JA, Donoso LA, Laibson PR. The ocular surface as part of the mucosal immune system: conjunctival mucosa-specific lymphocytes in ocular surface pathology. Eye. 1995; 9 (Pt 3): 261-7. https://doi.org/10.1038/eye.1995.51
  33. Pflugfelder SC, Stern ME. Biological functions of tear film. Experimental Eye Research. 2020; 197: 108115. https://doi.org/10.1016/j.exer.2020.108115
  34. Tavazzi S, Origgi R, Anselmi M, Corvino A, Colciago S, Fagnola M, et al. Effects of Aqueous-Supplementing Artificial Tears in Wearers of Biweekly Replacement Contact Lenses vs Wearers of Daily Disposable Contact Lenses. Clin Optom (Auckl). 2020 Jun 25; 12: 75-84. https://doi.org/10.2147/opto.s249078
  35. Alves M, Novaes P, de Morraye MA, Reinach PS, Rocha EM. Is dry eye an environmental disease? Arq Bras Oftalmol. 2014; 77(3). https://doi.org/10.5935/0004-2749.20140050
  36. Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo CK, et al. TFOS DEWS II Definition and Classification Report. Ocul Surf. 2017 Jul; 15(3): 276-283. https://doi.org/10.1016/j.jtos.2017.05.008
  37. Akpek EK, Amescua G, Farid M, Garcia-Ferrer FJ, Lin A, Rhee MK, et al. Dry Eye Syndrome Preferred Practice Pattern. Am Acad Ophthalm. 2019; 126(11): 286-334. https://doi.org/10.1016/j.ophtha.2018.10.023
  38. Schaumberg DA, Sullivan DA, Buring JE, Dana MR. Prevalence of dry eye syndrome among US women. Am J Ophthalm. 2003; 136(2): 318-326. https://doi.org/10.1016/s0002-9394(03)00218-6
  39. Jie Y, Xu L, Wu Y, Jonas JB. Prevalence of dry eye among adult Chinese in the Beijing Eye Study. Eye. 2009; 23: 688–693. https://doi.org/10.1038/sj.eye.6703101
  40. Tan LL, Morgan P, Cai ZQ, Straughan RA. Prevalence of and risk factors for symptomatic dry eye disease in Singapore. Clinical and Experimental Optometry. 2015; 98(1): 45-53. https://doi.org/10.1111/cxo.12210
  41. Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017 Jul; 15(3): 438-510. https://doi.org/10.1016/j.jtos.2017.05.011
  42. Rolando M, Zierhut M. The ocular surface and tear film and their dysfunction in dry eye disease. Surv Ophthalmol. 2001 Mar; 45(Suppl 2): S203-10. https://doi.org/10.1016/s0039-6257(00)00203-4
  43. Marinova E, Dabov D, Zdravkov Y. Ophthalmic complaints in face-mask wearing: prevalence, treatment, and prevention with a potential protective effect against SARS-CoV-2. Biotechnology & Biotechnological Equipment. 2020; 34(1): 1323-1335. doi: 10.1080/13102818.2020.1838323
  44. Pflugfelder SC, Corrales RM, de Paiva CS. T helper Cytokines in Dry Eye Disease. Exp Eye Res. 2013 Dec; 117: 10.1016/j.exer.2013.08.013. https://doi.org/10.1016/j.exer.2013.08.013
  45. Awisi-Gyau D, Begley CG, Situ P, Simpson TL. Changes in Corneal Detection Thresholds After Repeated Tear Film Instability. Invest Ophthalmol Vis Sci. 2019 Oct; 60(13): 4234–4240. https://doi.org/10.1167/iovs.19-27802
  46. Solomon A, Dursun D, Liu Z, Xie Y, Macri A, Pflugfelder SC. Pro- and Anti-inflammatory Forms of Interleukin-1 in the Tear Fluid and Conjunctiva of Patients with Dry-Eye Disease. Invest Ophthalmol Vis Sci. 2001; 42(10): 2283-2292.
  47. Luo L, Li DQ, Doshi A, Farley W, Corrales RM, Pflugfelder SC. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci. 2004 Dec; 45(12): 4293-301. https://doi.org/10.1167/iovs.03-1145.
  48. Corrales RM, Villarreal A, Farley W, Stern ME, Li DQ, Pflugfelder SC. Strain-related cytokine profiles on the murine ocular surface in response to desiccating stress. Cornea. 2007 Jun; 26(5): 579-84. https://doi.org/10.1097/ICO.0b013e318033a729
  49. Li DQ, Luo L, Chen Z, Kim HS, Song XJ, Pflugfelder SC. JNK and ERK MAP kinases mediate induction of IL-1beta, TNF-alpha and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res. 2006 Apr; 82(4): 588–596. https://doi.org/10.1016/j.exer.2005.08.019
  50. Roda M, Corazza I, Reggiani MLB, Pellegrini M, Taroni L, Giannaccare G, et al. Dry Eye Disease and Tear Cytokine Levels-A Meta-Analysis. Int J Mol Sci. 2020 May; 21(9): 3111. https://doi.org/10.3390/ijms21093111
  51. VanDerMeid KR, Su SP, Ward KW, Zhang JZ. Correlation of tear inflammatory cytokines and matrix metalloproteinases with four dry eye diagnostic tests. Invest Ophthalmol Vis Sci. 2012 Mar 21; 53(3): 1512-8. https://doi.org/10.1167/iovs.11-7627
  52. Yeh S, Song XJ, Farley W, Li DQ, Stern ME, Pflugfelder SC. Apoptosis of ocular surface cells in experimentally induced dry eye. Invest Ophthalmol Vis Sci. 2003 Jan; 44(1): 124-9. https://doi.org/10.1167/iovs.02-0581
  53. Tsubota K, Pflugfelder SC, Liu Z, Baudouin C, Kim HM, Messmer EM, et al. Defining Dry Eye from a Clinical Perspective. Int J Mol Sci. 2020 Dec; 21(23): 9271. https://doi.org/10.3390/ijms21239271
  54. Versura P, Bavelloni A, Grillini M, Fresina M, Campos EC. Diagnostic performance of a tear protein panel in early dry eye. Mol Vis. 2013; 19: 1247-1257.
  55. Flanagana JL, Willcoxab MDP. Role of lactoferrin in the tear film. Biochimie. 2009; 91(1): 35-43. https://doi.org/10.1016/j.biochi.2008.07.007
  56. Boukes RJ, Boonstra A, Breebaart AC, Reits D, Glasius E, Luyendyk L, et al. Analysis of human tear protein profiles using high performance liquid chromatography (HPLC). Doc Ophthalmol. 1987 Sep-Oct; 67(1-2): 105-13. https://doi.org/10.1007/BF00142704
  57. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect. 2020 Jun; 80(6): 607–613. https://doi.org/10.1016/j.jinf.2020.03.037
  58. Moshirfar M, West WB Jr, Marx DP. Face Mask-Associated Ocular Irritation and Dryness. Ophthalmol Ther. 2020 Sep; 9(3): 397–400. https://doi.org/10.1007/s40123-020-00282-6
  59. White DE. Blog: MADE: A new coronavirus-associated eye disease. [Internet]. The Healio Network. June 22, 2020. Available from: https://www.healio.com/news/ophthalmology/20200622/blog-a-new-coronavirusassociated-eye-disease
  60. Boccardo L. Self-reported symptoms of mask-associated dry eye: A survey study of 3,605 people. Cont Lens Anterior Eye. 2021 Jan 20: 101408. https://doi.org/10.1016/j.clae.2021.01.003
  61. Nichols JJ, Mitchell GL, King-Smith PE. Thinning Rate of the Precorneal and Prelens Tear Films. Investig Ophthalm Vis Sci. 2005 Jul; 46: 2353-2361. https://doi.org/10.1167/iovs.05-0094
  62. Koh S, Tung C, Kottaiyan R, Zavislan J, Yoon G, Aquavella G. Effect of Airflow Exposure on the Tear Meniscus. J Ophthalmol. 2012; 2012: 983182. https://doi.org/10.1155/2012/983182
  63. Contini C, Gallenga CE, Neri G, Maritati M, Conti P. A new pharmacological approach based on remdesivir aerosolized administration on SARS-CoV-2 pulmonary inflammation: A possible and rational therapeutic application. Med Hypotheses. 2020 Nov; 144: 109876. https://doi.org/10.1016/j.mehy.2020.109876
  64. Versura P, Nanni P, Bavelloni A, Blalock WL, Piazzi M , Roda A, et al. Tear proteomics in evaporative dry eye disease. Eye. 2010; 24: 1396–1402. https://doi.org/10.1038/eye.2010.7
  65. Niederkorn JY, Stern ME, Pflugfelder SC, de Paiva CS, Corrales RM, Gao J, et al. Desiccating Stress Induces T Cell-Mediated Sjögren’s Syndrome-Like Lacrimal Keratoconjunctivitis. J Immunol. 2006; 176(7): 3950-3957. https://doi.org/10.4049/jimmunol.176.7.3950
  66. Zhang X, Chen W, de Paiva CS, Volpe EA, Gandhi NB, Farley WJ, et al. Desiccating Stress Induces CD4+ T-Cell–Mediated Sjögren's Syndrome–Like Corneal Epithelial Apoptosis via Activation of the Extrinsic Apoptotic Pathway by Interferon-γ. Am J Pathol. 2011 Oct; 179(4): 1807–1814. https://doi.org/10.1016/j.ajpath.2011.06.030
  67. De Paiva CS, Chotikavanich S, Pangelinan SB, Pitcher III JD, Fang B, Zheng X, et al. IL-17 disrupts corneal barrier following desiccating stress. Mucosal Immunol. 2009 May; 2(3): 243–253. https://doi.org/10.1038/mi.2009.5
  68. De Paiva CS, Villarreal AL, Corrales RM, Rahman HT, Chang VY, Farley WJ, et al. IFN– Promotes Goblet Cell Loss in Response to Desiccating Ocular Stress. Investig Ophthalm Vis Sci. 2006; 47(13: 5579.
  69. WHO. Novel Coronavirus (2019-nCoV) Situation Report – 22. [Internet]. 2020 Feb 11. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200211-sitrep-22-ncov.pdf?sfvrsn=fb6d49b1_2
  70. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020 Mar 11; 27(3): 325–328. https://doi.org/10.1016/j.chom.2020.02.001
  71. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020 Feb 20; 382(8): 727–733. https://doi.org/10.1056/NEJMoa2001017
  72. WHO. Coronavirus disease 2019 (COVID-19) Situation Report – 51. [Internet]. 2020 Mar 11. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10
  73. Petersen E, Hui D, Hamer DH, Blumberg L, Madoff LC, Pollack M, et al. Li Wenliang, a face to the frontline healthcare worker. The first doctor to notify the emergence of the SARS-CoV-2, (COVID-19), outbreak. Int J Infect Dis. 2020 Apr; 93: 205–207. https://doi.org/10.1016/j.ijid.2020.02.052
  74. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17(3): 181–192. https://doi.org/10.1038/s41579-018-0118-9
  75. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten Ch, Gulyaeva AA, et al. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5: 536–544. https://doi.org/10.1038/s41564-020-0695-z
  76. Masters PS. The Molecular Biology of Coronaviruses. Adv Virus Res. 2006; 66: 193–292. https://doi.org/10.1016/S0065-3527(06)66005-3
  77. Seah I, Su X, Lingam G. Revisiting the dangers of the coronavirus in the ophthalmology practice. Eye (Lond). 2020 Jul; 34(7): 1155–1157. https://doi.org/10.1038/s41433-020-0790-7
  78. Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know. Int J Infect Dis. 2020 May; 94: 44–48. https://doi.org/10.1016/j.ijid.2020.03.004
  79. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16; 181(2): 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  80. Bourgonje AR, Abdulle AE, Timens W, Hillebrands J, Navis G, Gordijn SJ, et al. Angiotensin‐converting enzyme 2 (ACE2), SARS‐CoV‐2 and the pathophysiology of coronavirus disease 2019 (COVID‐19). The Journal of Pathology. 2020; 251(3): 228-248. https://doi.org/10.1002/path.5471
  81. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020 Apr; 94(7): e00127-20. https://doi.org/10.1128/JVI.00127-20
  82. Zhou L, Xu Z, Castiglione GM, Soiberman US, Eberhart CG, Duha EJ. ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection. Ocul Surf. 2020 Oct; 18(4): 537–544. https://doi.org/10.1016/j.jtos.2020.06.007
  83. Al-Sharif E, Strianese D, AlMadhi NH, D’Aponte A, dell’Omo R, Benedetto RD, et al. Ocular tropism of coronavirus (CoVs): a comparison of the interaction between the animal-to-human transmitted coronaviruses (SARS-CoV-1, SARS-CoV-2, MERS-CoV, CoV-229E, NL63, OC43, HKU1) and the eye. Int Ophthalmol. 2021 Jan; 41: 349–362. https://doi.org/10.1007/s10792-020-01575-2
  84. Ho D, Low R, Tong L, Gupta V, Veeraraghavan A, Agrawal R. COVID-19 and the Ocular Surface: A Review of Transmission and Manifestations. Ocular Immunology and Inflammation. 2020 Jun; 28(5): 726-734. https://doi.org/10.1080/09273948.2020.1772313
  85. Belser JA, Gustin KM, Maines TR, Pantin-Jackwood MJ, Katz JM, Tumpey TM. Influenza virus respiratory infection and transmission following ocular inoculation in ferrets. PLoS Pathog. 2012; 8(3): e1002569. https://doi.org/10.1371/journal.ppat.1002569
  86. Paulsen F. The human nasolacrimal ducts. Adv Anat Embryol Cell Biol. 2003; 170(III-XI): 1-106.
  87. Paulsen FP, Schaudig U, Thale AB. Drainage of tears: impact on the ocular surface and lacrimal system. Ocul Surf. 2003 Oct; 1(4):180-91. https://doi.org/10.1016/s1542-0124(12)70013-7
  88. Belser JA, Rota PA, Tumpey TM. Ocular tropism of respiratory viruses. Microbiol Mol Biol Rev. 2013 Mar; 77(1): 144–156. https://doi.org/10.1128/MMBR.00058-12
  89. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020 Jul; 24: 91–98. https://doi.org/10.1016/j.jare.2020.03.005
  90. Chentoufi AA, Dasgupta G, Nesburn AB, Bettahi I, Binder NR, Choudhury ZS, et al. Nasolacrimal duct closure modulates ocular mucosal and systemic CD4(+) T-cell responses induced following topical ocular or intranasal immunization. Clin Vaccine Immunol. 2010 Mar; 17(3): 342–353. https://doi.org/10.1128/CVI.00347-09
  91. Lawrenson JG, Buckley RJ. COVID-19 and the eye. Ophthalmic Physiol Opt. 2020 Jul; 40(4): 383-388. https://doi.org/10.1111/opo.12708
  92. Napoli PE, Nioi M, d'Aloja E, Fossarello M. The Ocular Surface and the Coronavirus Disease 2019: Does a Dual 'Ocular Route' Exist? J Clin Med. 2020 May; 9(5): 1269. https://doi.org/10.3390/jcm9051269
  93. Raboud J, Shigayeva A, McGeer A, Bontovics E, Chapman M, Gravel D, et al. Risk factors for SARS transmission from patients requiring intubation: a multicentre investigation in Toronto, Canada. PLoS One. 2010; 5(5): e10717. https://doi.org/10.1371/journal.pone.0010717
  94. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020; 9(1): 221-236. https://doi.org/10.1080/22221751.2020.1719902
  95. Loon SC, Teoh SC, Oon LL, Se-Thoe SY, Ling AE, Leo YS, et al. The severe acute respiratory syndrome coronavirus in tears. Br J Ophthalmol. 2004 Jul; 88(7): 861-863. https://doi.org/10.1136/bjo.2003.035931
  96. Valente P, Iarossi G, Federici M, Petroni S, Palma P, Cotugno N, et al. Ocular manifestations and viral shedding in tears of pediatric patients with coronavirus disease 2019: a preliminary report. J AAPOS. 2020 Aug; 24(4): 212-215. https://doi.org/10.1016/j.jaapos.2020.05.002
  97. Hui KPY, Cheung MC, Perera RAPM, Ng KC, Bui CHT, Ho JCW, et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. Lancet Respir Med. 2020 Jul; 8(7): 687-695. https://doi.org/10.1016/S2213-2600(20)30193-4
  98. Colavita F, Lapa D, Carletti F, Lalle E, Bordi L, Marsella P, et al. SARS-CoV-2 Isolation From Ocular Secretions of a Patient With COVID-19 in Italy With Prolonged Viral RNA Detection. Ann Intern Med. 2020 Apr; 173(3): 242-243. https://doi.org/10.7326/M20-1176
  99. Bertoli F, Veritti D, Danese C, Samassa F, Sarao V, Rassu N, et al. Ocular Findings in COVID-19 Patients: A Review of Direct Manifestations and Indirect Effects on the Eye. J Ophthalmol. 2020; 2020: 4827304. https://doi.org/10.1155/2020/4827304
  100. Chen Z, Yuan G, Duan F, Wu K. Ocular Involvement in Coronavirus Disease 2019: Up-to-Date Information on Its Manifestation, Testing, Transmission, and Prevention. Front Med (Lausanne). 2020; 7: 569126. https://doi.org/10.3389/fmed.2020.569126
  101. Chen L, Liu M, Zhang Z, Qiao K, Huang T, Chen M, et al. Ocular manifestations of a hospitalised patient with confirmed 2019 novel coronavirus disease. Br J Ophthalmol. 2020 Jun; 104(6): 748-751. https://doi.org/10.1136/bjophthalmol-2020-316304
  102. Xie HT, Jiang SY, Xu KK, Liu X, Xu B, Wang L, et al. SARS-CoV-2 in the ocular surface of COVID-19 patients. Eye Vis (Lond). 2020; 7: 23. https://doi.org/10.1186/s40662-020-00189-0
  103. Seah IYJ, Anderson DE, Kang AEZ, Wang L, Rao P, Young BE, et al. Assessing Viral Shedding and Infectivity of Tears in Coronavirus Disease 2019 (COVID-19) Patients. Ophthalmology. 2020 Jul; 127(7): 977-979. https://doi.org/10.1016/j.ophtha.2020.03.026
  104. Navel V, Chiambaretta F, Dutheilb F. Haemorrhagic conjunctivitis with pseudomembranous related to SARS-CoV-2. Am J Ophthalmol Case Rep. 2020 Sep; 19: 100735. https://doi.org/10.1016/j.ajoc.2020.100735
  105. Dockery DM, Rowe SG, Murphy MA, Krzystolik MG. The Ocular Manifestations and Transmission of COVID-19: Recommendations for Prevention. J Emerg Med. 2020 Jul; 59(1): 137-140. https://doi.org/10.1016/j.jemermed.2020.04.060
  106. Maginnis MS. Virus–Receptor Interactions: The Key to Cellular Invasion. J Mol Biol. 2018 Aug 17; 430(17): 2590–2611. https://doi.org/10.1016/j.jmb.2018.06.024
  107. Roychoudhury S, Das A, Sengupta P, Dutta S, Roychoudhury S, Choudhury AP, et al. Viral Pandemics of the Last Four Decades: Pathophysiology, Health Impacts and Perspectives. Int J Environ Res Public Health. 2020 Dec; 17(24): 9411. https://doi.org/10.3390/ijerph17249411
  108. Vetter P, Eberhardt CS, Meyer B, Murillo PAM, Torriani G, Pigny F, et al. Daily Viral Kinetics and Innate and Adaptive Immune Response Assessment in COVID-19: a Case Series. mSphere. 2020 Nov-Dec; 5(6): e00827-20. https://doi.org/10.1128/mSphere.00827-20
  109. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020 May 28; 181(5): 1036–1045.e9. https://doi.org/10.1016/j.cell.2020.04.026
  110. Laurie GW, Olsakovsky LA, Conway BP, McKown RL, Kitagawa K, Nichols JJ. Dry eye and designer ophthalmics. Optom Vis Sci. 2008 Aug; 85(8): 643. https://doi.org/10.1097/OPX.0b013e318181ae73
  111. Rusciano D, Pezzino S, Olivieri M, Cristaldi M, Gagliano C, Lupo G, et al. Age-Related Dry Eye Lactoferrin and Lactobionic Acid. Ophthalmic Res. 2018 Jul; 60(2): 94-99. https://doi.org/10.1159/000489093
  112. Valenti P, Antonini G. Lactoferrin. Cell Mol Life Sci. 2005; 62: 2576. https://doi.org/10.1007/s00018-005-5372-0
  113. Vagge A, Senni C, Bernabei F, Pellegrini M, Scorcia V, Traverso CE, et al. Therapeutic Effects of Lactoferrin in Ocular Diseases: From Dry Eye Disease to Infections. Int J Mol Sci. 2020 Sep; 21(18): 6668. https://doi.org/10.3390/ijms21186668
  114. Kruzel ML, Zimecki M, Actor JK. Lactoferrin in a Context of Inflammation-Induced Pathology. Front Immunol. 2017; 8: 1438. https://doi.org/10.3389/fimmu.2017.01438
  115. Actor JK, Hwang SA, Kruzel ML. Lactoferrin as a natural immune modulator. Curr Pharm Des. 2009; 15(17): 1956-1973. https://doi.org/10.2174/138161209788453202
  116. D'Souza S, Tong L. Practical issues concerning tear protein assays in dry eye. Eye Vis (Lond). 2014; 1: 6. https://doi.org/10.1186/s40662-014-0006-y
  117. Sun CB, Wang YY, Liu GH, Liu Z. Role of the Eye in Transmitting Human Coronavirus: What We Know and What We Do Not Know. Front Public Health. 2020; 8: 155. https://doi.org/10.3389/fpubh.2020.00155
  118. Caselli E, Soffritti I, Lamberti G, D’Accolti M, Franco F, Demaria D, et al. Anti-SARS-Cov-2 IgA Response in Tears of COVID-19 Patients. Biology (Basel). 2020 Nov; 9(11): 374. https://doi.org/10.3390/biology9110374