ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 42 of 50
Up
УЖМБС 2021, 6(1): 293–302
https://doi.org/10.26693/jmbs06.01.293
Biology

The Effect of Succinic Acid on Changes in the Mitochondrial Apparatus of Skeletal Muscle Cells in the Simulation of Physical Loads in the Experiment

Voitenko V. L. 1, Gunina L. M. 2
Abstract

Today, a search in the experiment and practice of sports training of pharmacological agents, which at various levels of organization of the living organism, including both muscle tissue and muscle cells, were able to mitigate the negative consequences ofsuper-intense long-term physical loads, does not have to stop. One such universal means is succinic acid, which is a natural metabolite of the Krebs cycle, and, therefore, directly related to the mechanisms of energy generation in the body. Since this process in cells, and muscle tissue cells is no exception, it takes place in mitochondria. The definition of the structural-functional rearrangements of the mitochondrium of myocytes during physical loads is very interesting especially when succinic acid is used as an organoprotector. Material and methods. Physical load was simulated for three weeks in rats by swimming with an additional load. 10 intact animals served as control, and the remaining 20 were equally divided into two study groups, the first was with physical load and the second group had the same load application of succinic acid in a daily dosage of 2.5 mg per animal weighing 220-250 g, based on the corresponding extrapolation of dosages to an adult human. Research on experimental animals was carried out in compliance with all norms of bioethics. Electron microscopic studies were carried out on the material of the tissue gastrocnemius’ muscle. Results and discussion. The results of the studies showed that hypoxia of the subcompensated load was found in the cells of this tissue, as well as activation of mitochondrial morphogenesis by 58.3% and 69.0% in both the subsarcoleal and the intraamyofibrillic subpopulations, respectively. In the experiment we established an increase in the number of membrane structures and an increase in the average diameter of mitochondria, leading to an increase in the energy capacity of the mitochondrium. These phenomena can be attributed to compensatory-adaptive changes under the influence of physical load. The application of succinic acid activates these processes to an even greater extent, i.e. the application of this pharmacological agent has a powerful protective effect on the optimization of energy metabolism of muscle tissue under physical loads. Thus, it showed that succinic acid contributed to the reduction of the structural signs of endothelial and mitochondrial dysfunction, contributing, in accordance to its known properties, optimization of energy metabolism and preservation of the integrity of mitochondria with levelling of the structural manifestations of mitochondrial dysfunction. This, in turn, leads to the optimization of macroergs products and hence increases in physical performance. Conclusion. The stated facts at a new level of development of science prove the expediency and effectiveness of using succinic acid and pharmacological agents based on it in order to improve the functional state of the body of athletes and their motor qualities

Keywords: physical loads, mitochondria, energy generation, succinic acid, physical performance

Full text: PDF (Ukr) 0P

References
  1. Distefano G, Standley RA, Zhang X, Carnero EA, Yi F, Cornnell HH, et al. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J Cachexia Sarcopenia Muscle. 2018; 9(2): 279-94. https://doi.org/10.1002/jcsm.12272
  2. Dubé JJ, Broskey NT, Despines AA, Stefanovic-Racic M, Toledo FG, Goodpaster BH, et al. Muscle Characteristics and Substrate Energetics in Lifelong Endurance Athletes. Med Sci Sports Exerc. 2016; 48(3): 472-80. https://doi.org/10.1249/MSS.0000000000000789
  3. Yin B, Tang S, Sun J, Zhang X, Xu J, Di L, et al. Vitamin C and sodium bicarbonate enhance the antioxidant ability of H9C2 cells and induce HSPs to relieve heat stress. Cell Stress Chaperones. 2018; 23(4): 735−48. https://doi.org/10.1007/s12192-018-0885-2
  4. Ascensão A, Lumini-Oliveira J, Oliveira PJ, Magalhães J. Mitochondria as a target for exercise-induced cardioprotection. Curr Drug Targets. 2011; 12(6): 860-871. https://doi.org/10.2174/138945011795529001
  5. Calebiro D, Koszegi Z. The subcellular dynamics of GPCR signaling. Mol Cell Endocrinol. 2019; 483: 24−30. https://doi.org/10.1016/j.mce.2018.12.020
  6. Smyrnov AV, Nesterova OB, Golubev RV. Yantarnaya kyslota y ee prymenenye v medytsyne. Chast I. yantarnaya kyslota: metabolyt y regulyator metabolyzma organyzma cheloveka [Succinic acid and its use in medicine. Part I. Succinic acid: metabolite and regulator of the metabolism of the human body]. Nefrologiya. 2014; 18(2): 33−41. [Russian]
  7. Ferone M, Raganati F, Olivieri G, Marzocchella A. Bioreactors for succinic acid production processes. Crit Rev Biotechnol. 2019; 39(4): 571−86. https://doi.org/10.1080/07388551.2019.1592105
  8. Jiang M, Ma J, Wu M, Liu R, Liang L, Xin F, et al. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies. Bioresour Technol. 2017; 245(Pt B): 1710−17. https://doi.org/10.1016/j.biortech.2017.05.209
  9. Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg. 2018; 1859(9): 940−950. https://doi.org/10.1016/j.bbabio.2018.05.019
  10. Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019; 44(1): 3−15. https://doi.org/10.3892/ijmm.2019.4188
  11. Lobo-Jarne T, Pérez-Pérez R, Flavia Fontanesi, Timón-Gómez A, Wittig I, Peñas A, et al. Multiple pathways coordinate assembly of human mitochondrial complex IV and stabilization of respiratory supercomplexes. EMBO J. 2020; 39(14): e103912. https://doi.org/10.15252/embj.2019103912
  12. Gunina LM. Dotsilnist vykorystannya kompozytsiy na osnovi burshtynovoyi kysloty v sporti vyshchykh dosyagnen. [The expediency of using compositions based on succinic acid in sports of the highest achievements]. Pedagogika, psikhologiya ta mediko-biologichni problemi fizichnogo vikhovannya i sportu. 2015; 5: 50−54. [Ukrainian]
  13. Scoletta S, Biagioli B. Energetic myocardial metabolism and oxidative stress: let’s make them our friends in the fight against heart failure. Biomedical Pharmacotherapy. 2010; 64(3): 203–207. https://doi.org/10.1016/j.biopha.2009.10.002
  14. Rozova KV, Bolgova TV, Tymoshenko KR, Vinnychuk YuD, Gunina LM, Bezugla VV. Perebudova tkanyn skeletnykh m'yaziv, legen ta sertsya shchuriv za umov gipoksiyi navantazhennya v eksperymenti. [Reconstruction of skeletal muscle, lung and heart tissues of rats under conditions of stress hypoxia in the experiment]. Fiziologichnij zhurnal. 2016; 62(6): 72−80. [Ukrainian]
  15. Iuso A, Repp B, Biagosch C, Terrile C, Prokisch H. Assessing Mitochondrial Bioenergetics in Isolated Mitochondria from Various Mouse Tissues Using Seahorse XF96 Analyzer. Methods Mol Biol. 2017; 1567: 217−30. https://doi.org/10.1007/978-1-4939-6824-4_13
  16. Vilmor DzhX, Kostill DL. Fiziologiya sportu [Physiology of sport]. K: Olimpiyska literature; 2003. 655 s. [Russian]
  17. Yevropeyska konventsiya pro zakhyst khrebetnykh tvaryn, shcho vykorystovuyutsya dlya doslidnykh ta inshykh naukovykh tsiley vid 18.03.1986 [European convention for the protection of vertebrate animals used for research and other scientific purposes 18.03.1986]. [Internet]. Available from: https://zakon.rada.gov.ua/laws/show/994_137
  18. Gelsinska deklaratsiya Vsesvitnoyi medychnoyi asotsiatsiyi «Etychni pryntsypy medychnykh doslidzhen za uchastyu lyudyny u yakosti ob’yekta doslidzhennya» vid 01.06.1964 [Helsinki declaration of the world medical association "Ethical principles of medical research with human participation as an object of study" from 01.06.1964]. [Internet]. Available from: http://zakon4.rada.gov.ua/laws/show/990_005
  19. Bioetychna ekspertyza doklinichnykh ta inshykh naukovykh doslidzhen, shcho vykonuyutsya na tvarynakh [Bioethical examination of preclinical and other scientific studies performed on animals]: Metodychni rekomendatsiyi Natsionalnogo Komitetu z pytan bioetyky pry Prezydiyi NAN Ukrayiny, Komitetu z bioetyky pry Prezydiyi AMN Ukrayiny, Instytutu farmakologiyi i toksykologiyi AMN Ukrayiny, Derzhavnogo farmakologichnogo tsentru MOZ Ukrayiny. [Internet]. K; 2006. 29 s.
  20. Karupu VYa. Elektronnaya mykroskopyya [Electron microscopy]. K: Vyshcha shkola; 1984. 208 s. [Russian]
  21. Lukyanova EM, Antypkyn YuG, Chernyshov VP, Vykhovanets EV. Metodyka statystycheskoy obrabotky medytsynskoy ynformatsyy v nauchnykh yssledovanyyakh [Methods of statistical processing of medical information in scientific research]. K: Planeta lyudey; 2002. 267 s. [Russian]
  22. Frelikh GA, Polomeeva NYu, Vasilʼev AS, Udut VV. Sovremennye metody otsenky funktsyonalnogo sostoyanyya mytokhondryy [State of the art methods of evaluation of mitochondrial function]. Sybyrskiy medytsynskiy zhurnal. 2013; 28(3): 7−13. [Russian]
  23. Pokotylo PB. Ultrastrukturne doslidzhennya mitokhondrialnogo aparatu kardiomiotsytiv intaktnykh shchuriv [Ultrastructural study of the cardiomyocytes mitochondrial apparatus of the intact rat]. Svit biologiyi ta medytsyny. 2014; 21(5): 148−415. [Ukrainian]
  24. Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020; 21(4): 204−224. https://doi.org/10.1038/s41580-020-0210-7
  25. Kühlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015; 13: 89. https://doi.org/10.1186/s12915-015-0201-x
  26. Mironova GD, Rozova EV, Belosludtseva NV, Man’kovskaya IN. Dynamic Restructuring of the Myocardial Mitochondria in Response to Uridine Modulation of the Activity of Mitochondrial ATP-Dependent Potassium Channel under Conditions of Acute Hypoxic Hypoxia. Bull Experim Biol Med. 2019; 166(6): 806−810.
  27. Mankovska IM, Gavenauskas BL, Nosar VI, Nazarenko AI, Rozova KV, Bratus LV. Mekhanizmy adaptatsiyi m'yazovoyi tkanyny do gipoksiyi navantazhennya za umov diyi intervalnoyi gipoksychnoyi gipoksiyi [Mechanisms of adaptation of muscle tissue to load hypoxia under conditions of interval hypoxic hypoxia]. Sportyvna medytsyna. 2005; 1: 3−11. [Ukrainian]
  28. Scoletta S, Biagioli B. Energetic myocardial metabolism and oxidative stress: let's make them our friends in the fight against heart failure. Biomed Pharmacother. 2010; 64(3): 203–207. https://doi.org/10.1016/j.biopha.2009.10.002
  29. Gil'miiarova FN, Radomskaia VM, Baisheva GM, Kretova IG, Kleĭman MS, Pervova IuV. The role of hyperlactatedehydrogenasemia in induction of metabolic disorders in the body. Vopr Med Khim. 2001; 47(5): 469−476.
  30. Tikhonova EO, Lyapina EP, Shuldʼyakov AA, Satarova SA. Yspolzovanye preparatov, soderzhashchykh suktsynat, v klynyke ynfektsyonnykh bolezney [Use of succinate-containing agents in the treatment of infectious diseases]. Terapevtycheskyy arkhyv. 2016; 11: 121−127. [Russian]
  31. Gunina LM. Vlyyanye yantarnoy kysloty y ee proyzvodnykh na fyzycheskuyu rabotosposobnost sportsmenov [Influence of succinic acid and its derivatives on the physical capacity of sportsmen]. Dopovidi Natsionalnoyi akademiyi nauk Ukrayiny. 2013; 3: 180−184. [Ukrainian]
  32. Harma MI, Harma M, Erel O. Measuring plasma oxidative stress biomarkers in sport medicine. Eur J Appl Physiol. 2006; 97(4): 505−508. https://doi.org/10.1007/s00421-006-0202-0
  33. Banfi G, Malavazos A, Iorio E, Dolci A, Doneda L, Verna R, et al. Plasma oxidative stress biomarkers, nitric oxide and heat shock protein 70 in trained elite soccer players. Eur J Appl Physiol. 2006; 96(5): 483−486. https://doi.org/10.1007/s00421-005-0104-6
  34. El Abed K, Ammar A, Boukhris O, Trabelsi K, Masmoudi L, Bailey SJ, et al. Independent and Combined Effects of All-Out Sprint and Low-Intensity Continuous Exercise on Plasma Oxidative Stress Biomarkers in Trained Judokas. Front Physiol. 2019; 10: 842. https://doi.org/10.3389/fphys.2019.00842
  35. Rozova EV, Mankovskaya IN, Mironova GD. Structural and Dynamic Changes in Mitochondria of Rat Myocardium under Acute Hypoxic Hypoxia: Role of Mitochondrial ATP-Dependent Potassium Channel. Biochemistry. 2015; 80(8): 994−1000. https://doi.org/10.1134/S0006297915080040
  36. Nanadikar MS, Vergel Leon AM, Borowik S, Hillemann A, Zieseniss A, Belousov VV, et al. O2 affects mitochondrial functionality ex vivo. Redox Biol. 2019; 22: 101152. https://doi.org/10.1016/j.redox.2019.101152
  37. Borysova O. Zhyzn y smert mytokhondryy [Life and death of mitochondria]. 2018. [Internet]. Available from: https://habr.com/ru/post/424573/
  38. Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012; 441(2): 523−540. https://doi.org/10.1042/BJ20111451
  39. Zenkov NK, Chechushkov AV, Kozhin PM, Martinovich GG, Kandalintseva NV, Menshchikova EB. Autofagyya kak mekhanyzm zashchyty pry okyslytelnom stresse [Autophagy as a protective mechanism in oxidative stress]. Byulleten sybyrskoy medytsyny. 2019; 18(2): 195–214. [Russian]
  40. Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015; 22(3): 377–388. https://doi.org/10.1038/cdd.2014.150
  41. Anding AL, Baehrecke EH. Cleaning house: Selective autophagy of organelles. Dev Cell. 2017; 41(1): 10−22. https://doi.org/10.1016/j.devcel.2017.02.016
  42. Marreiros BC, Calisto F, Castro PJ, Duarte AM, Sena FV, Silva AF, et al. Exploring membrane respiratory chains. Biochim Biophys Acta. 2016; 1857(8): 1039−1067. https://doi.org/10.1016/j.bbabio.2016.03.028
  43. Bernal M, Yang X, Lisby M, Mazón G. The FANCM family Mph1 helicase localizes to the mitochondria and contributes to mtDNA stability. DNA Repair (Amst). 2019; 82: 102684. https://doi.org/10.1016/j.dnarep.2019.102684
  44. Smyrnov AV, Nesterova OB, Golubev RV. Yantarnaya kyslota y ee prymenenye v medytsyne. Chast II. Prymenenye yantarnoy kysloty v medytsyne [Succinic acid and its use in medicine. Part I. Succinic acid: metabolite and regulator of the metabolism of the human body]. Nefrologyya. 2014; 18(4): 12−24. [Russian]
  45. Yakovleva IL. Mekhanizmy aktoprotektornoyi diyi pokhidnykh burshtynovoyi kysloty [Mechanisms of actoprotective action of succinic acid derivatives]. Likarska sprava. 2013; 3: 78−85. [Ukrainian]
  46. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, et al. (all 19 coautors). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005; 309(5733): 481−484. https://doi.org/10.1126/science.1112125
  47. Stein A, Sia EA. Mitochondrial DNA repair and damage tolerance. Front Biosci (Landmark Ed). 2017 Jan 1; 22: 920-943. https://doi.org/10.2741/4525
  48. Yan C, Duanmu X, Zeng L, Liu B, Song Z. Mitochondrial DNA: Distribution, Mutations, and Elimination. Cells. 2019; 8(4): 379. https://doi.org/10.3390/cells8040379
  49. Vera Y, Dias-Romero M, Rodrigues S, Lue Y, Wang C, Swerdloff RS, et al. Mitochondria-Dependent Pathway Is Involved in Heat-Induced Male Germ Cell Death: Lessons from Mutant Mice. Biol Reproduction. 2004; 70(14): 1534−1540. https://doi.org/10.1095/biolreprod.103.024661
  50. Okovityi SV, Radʼko SV. Prymenenye suktsynatov v sporte [The application of succine in sports]. Voprosy kurortologii, fizioterapiyi i lechebnoy fizicheskoy kultury. 2015; 92(6): 59−65. https://doi.org/10.17116/kurort2015659-65 [Ukrainian]
  51. Platonov VN. Diigatelnyie kachestva i fizicheskaya aktivnost` sportsmenov [Motor qualities and physical fitness of athletes]. K: Olimpijskaya literatura; 2017. s. 222−322, 488−491, 535−563. [Russian]