ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 42 of 59
Up
УЖМБС 2020, 5(5): 319–323
https://doi.org/10.26693/jmbs05.05.319
Biology

The State of Oxidative Metabolism in the Cardiac and Skeletal Muscle Tissue in Conditions of Light Deprivation

Hilmutdinova M. Sh., Chebotar L. D., Larycheva O. M.
Abstract

The article considers the features of oxidative metabolism of cardiac and skeletal muscle tissue in the changed photoperiod, under the influence of round-the-clock light deprivation in combination with the introduction of exogenous melatonin. Material and methods. The experimental study was performed on male Wistar rats. Two groups were formed for research: intact and experimental. The animals of the intact group were in standard housing and feeding conditions, without changes in light regime. The animals of the experimental group for 30 days were in conditions of round-the-clock light deprivation on the background of the introduction of melatonin at a dose of 1.0 mg/kg body weight. Results and discussion. The level of production of reactive oxygen species was evaluated by the formation of a superoxide anion radical. To assess the prooxidant-antioxidant system in the homogenate of the studied tissues was determined by the concentration of thiobarbituric acid reactive substances. The efficiency of the enzyme link was evaluated by catalase and superoxide dismutase activity. We revealed an increase in the production of superoxide anion radical due to the activity of phagocytes compared to the intact group in the heart muscle under conditions of light deprivation on the background of the introduction of melatonin. In skeletal muscle tissue homogenate the production of superoxide anion radical by the mitochondrial electron transport chain production is likely was reduced compared to the intact group. Light deprivation on the background of exogenous administration of melatonin reduces the intensity of production of reactive oxygen species, which is confirmed by a decrease in the level of superoxide anion radical in the homogenate of the quadriceps femoris muscle tissues of experimental animals. Melatonin as an antioxidant reduces the production of superoxide anion radical by mitochondrial oxidation in the quadriceps femoris muscle. In this case, the excess melatonin stabilizes the fluidity of the membrane, reducing its permeability, which may indicate the protective properties of this substance. Conclusion. Thus, modeling the conditions of excess melatonin modifies the generation of superoxide anion radical from various sources. The above experimental conditions contribute to multidirectional changes in the quantitative generation of the superoxide anion radical in the heart and skeletal muscles. Changes in the indicators of prooxidant-antioxidant status in the homogenate of the studied tissues under the selected experimental conditions were not detected

Keywords: muscle tissue, reactive oxygen species, light deprivation, melatonin

Full text: PDF (Ukr) 272K

References
  1. Lotosh TA, Vynogradova YA, Anysymov VN. Postoyannoe osveshchenye kak faktor prezhdevremennogo starenyya. Rol nachala vozdeystvyya [Constant lighting as a factor in premature aging. Role of the initiation of exposure]. Sbornyk nauchnykh trudov II Rossyyskogo sympozyuma s mezhdunarodnym uchastyem “Svetovoy rezhym, starenye y rak”. Petrozavodsk, 2013 Oct 17-19. Petrozavodsk; 2013. s. 204-212. [Russian]
  2. Chabra A, Shokrzadeh M, Naghshvar F, Salehi F, Ahmadi A. Melatonin ameliorates oxidative stress and reproductive toxicity induced by cyclophosphamide in male mice. Hum Exp Toxicol. 2014; 33: 185-195.
  3. Kamdar BB, Tergas AI, Mateen FJ, Bhayani NH, Oh J. Night-shift work and risk of breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013 Feb; 138(1): 291-301. https://doi.org/10.1007/s10549-013-2433-1
  4. Kloog I, Stevens RG, Haim A, Portnov BA. Nighttime light level co-distributes with breast cancer incidence worldwide. Cancer Causes Control. 2010 Dec; 21(12): 2059-68. https://doi.org/10.1007/s10552-010-9624-4
  5. Arushanyan EB, Beyer EV. Gormon mozgovoy zhelezy epyfyza melatonyn – unyversalnyy estestvennyy adaptogen [The pineal gland hormone melatonin is a universal natural adaptogen]. Uspekhy fyzyologycheskykh nauk. 2012; 43(3): 82-100. [Russian]
  6. Arushanyan EB, Shchetynyn EV. Melatonyn kak unyversalnyy modulyator lyubykh patologycheskykh protsessov [Melatonin as a universal modulator of any pathological processes]. Patologycheskaya fyzyologyya y eksperymentalnaya terapyya. 2016; 60(1): 79-88. [Russian]
  7. Bondarenko LO. Znachennya vzayemodiyi faktoriv vnutrishnogo i zovnishnogo seredovyshcha v regulyatsiyi funktsionalnoyi aktyvnosti pinealnoyi zalozy [The value of the interaction of factors of the internal and external environment in the regulation of the functional activity of the pineal gland]. Abstr. Dr. Sci. (Biol.). Kyiv; 2003. 37 s. [Ukrainian]
  8. Pishak VP, Bulyk RYe. Mekhanizmy uchasti shyshkopodibnoyi zalozy u zabezpechenni tsyrkadiannoyi rytmichnosti fiziologichnykh funktsiy [Mechanisms of participation of a pineal gland in maintenance of circadian rhythmicity of physiological functions]. Bukovynskyy medychnyy visnyk. 2006; 10(4): 5-8. [Ukrainian]
  9. Frenkel Yu.D. NO-zalezhni mekhanizmy rozladiv okysnyuvalnogo metabolizmu golovnogo mozku shchuriv pry porushenni utvorennya melatoninu [NO-dependent mechanisms of disorders of oxidative metabolism of the brain of rats in violation of melatonin formation]. Abstr. PhDr. (Med.). Kharkiv; 2015. 22 s. [Ukrainian]
  10. Tsebrzhynskyy OY. Dyfferentsyrovannoe spektrofotometrycheskoe opredelenye produktsyy superoksyda v tkanyakh NST-testom [Differentiated spectrophotometric determination of superoxide production in tissues by HCT test]. Aktualni problemy suchasnoyi medytsyny. 2002; 2(1): 96-97. [Russian]
  11. Tsvyakh OO. Osoblyvosti prooksydantno-antyoksydantnogo stanu tkanyn shlunka pry nestachi ta nadlyshku melatoninu [Features of the prooxidant-antioxidant state of gastric tissues in the absence and excess of melatonin]. Abstr. PhDr. (Biol.). Ternopil; 2017. 22 s. [Ukrainian]
  12. Atramentova LO, Utyevska OM. Biometriya. Ch. II. Porivnyannya grup ta analiz zv’yazku [Biometrics. Part II. Group comparison and communication analysis]. Pidruchnyk. Kharkiv: Ranok; 2007. 176 s. [Ukrainian]
  13. Eghbal MA, Eftekhari A, Ahmadian E, Azarmi Ya, Parvizpur A. A review of biological and pharmacological actions of melatonin: oxidant and prooxidant properties. Pharmaceutical Bioprocessing. 2016; 4(4): 69-81.
  14. Tan DX, Reiter RJ, Manchester LC, Yan MT, El-Sawi M, Sainz RM, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem. 2002 Feb; 2(2): 181-97. https://doi.org/10.2174/1568026023394443
  15. Fan C, Pan Y, Yang Y, Di S, Jiang S, Ma Z, et al. HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways. J Pineal Res. 2015 Oct; 59(3): 321-33. https://doi.org/10.1111/jpi.12261
  16. Menshchykova EB, Lankyn VZ, Zenkov NK. Okyslytelnyy stress. Prooksydanty y antyoksydanty [Oxidative stress. Prooxidants and antioxidants]. M: Slovo; 2006. 556 s. [Russian]
  17. Hardeland R, Reiter RJ, Poeggeler B, Tan DX. The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev. 1993 Fall; 17(3): 347-57. https://doi.org/10.1016/s0149-7634(05)80016-8
  18. Nepomnyashchykh SF, Gutsol LO, Kuklyna LB, Gaskova NP. Stress kak mekhanyzm adaptatsyy, ego narushenyya y ykh farmakologycheskaya korrektsyya [Stress as a mechanism of adaptation, its disorders and their pharmacological correction]. Almanakh sestrynskogo dela. 2014; 2: 4-8. [Russian]
  19. Latyushyn YaV. Zakonomernosty molekulyarno-kletochnykh adaptatsyonnykh protsesov v systeme krovy pry ostrom khronycheskom gypokynetycheskom stresse [Regularities of molecular-cellular adaptation processes in the blood system in acute chronic hypokinetic stress]. Abstr. Dr. Sci. (Biol.). Chelyabynsk; 2010. 42 s. [Russian]
  20. Maslov LN, Krylatov AV, Lyshmanov YuB. Antyarytmycheskoe deystvye agonystov μ-opyatnykh retseptorov pry adrenalovykh arytmyyakh: rol vegetatyvnoy nervnoy systemy [Antiarrhythmic action of μ-opiate receptor agonists in adrenal arrhythmias: the role of the autonomic nervous system]. Byulleten eksperymentalnoy byologyy y medytsyny. 1996; 122; 25-27. [Russian]