ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 14 of 67
Up
УЖМБС 2020, 5(3): 122–128
https://doi.org/10.26693/jmbs05.03.122
Experimental Medicine and Morphology

Immunogistochemical Analysis of Peyer’s Patches of the Albino Rats’ Small Intestine after Administration of Clarithromycin

Hryn V. H., Kostуlenko Yu. P., Shepitko K. V., Lavrenko D. О.
Abstract

Antibacterial therapy, and especially the use of broad-spectrum antibiotics, partially or completely suppresses not only pathogenic, but also normal microflora, which is the cause of various functional disorders of the intestinal tract. The questions concerning the morphological and functional state of structured lymphatic epithelial formations of the intestinal tract, of which the most representative group lymphoid nodules (Peyer’s patches), are extremely insufficiently and contradictory, have been studied. The purpose of the research was to study Peyer’s patches of the small intestine of white rats after taking clarithromycin using immunohistochemical analysis methods. Material and Methods. 30 mature albino mature male rats weighted 200.0±20.0 g were involved into the experiment. A broad-spectrum antibiotic (clarithromycin, 500 mg tablets, the dose was 10 mg/kg) was administered to animals orally with food in the regime of their two-time feeding per day (morning and evening), for 10 days. After vivisection, selective excision of sections of the mesenteric part of the small intestine with Peyer’s patches was performed. Immunohistochemical studies were performed in the «Prime Test» laboratory at the Department of Pathological Anatomy Kharkov Institute of Postgraduate Education. A complex of morphological studies was carried out on a Primo Star microscope (Carl Zeiss) using the AxioCam program (ERc 5s). Results and discussion. The study demonstrated that after the course administration of clarithromycin, the changes consisted in a decrease in B and T lymphocytes in the correspondingly dependent zones, and an increase in their number in the intermediate zones between the lymphoid nodules. The effect of clarithromycin on the intestinal microflora is associated with an increase in the number of plasmocytes, macrophages and classical dendritic cells in Peyer’s patches, as well as the appearance of plasmacytoid dendritic cells. The action of the antibiotic leads to the phagocytic activation of enterocytes in the lymphoid-associated epithelium of Peyer’s patches. Conclusion. The results of immunohistochemical analysis confirm our previous conclusion that clarithromycin, as an antibacterial drug with a wide spectrum of action, has pronounced immunostimulating properties.

Keywords: white rats, Peyer’s patches, clarithromycin, immunohistochemical analysis

Full text: PDF (Ukr) 659K

References
  1. Gagliardi A, Totino V, Cacciotti F, Iebba V, Neroni B, Bonfiglio G, et al. Rebuilding the Gut Microbiota Ecosystem. Int J Environ Res Public Health. 2018. 15(8): 1679. https://www.ncbi.nlm.nih.gov/pubmed/30087270. https://www.ncbi.nlm.nih.gov/pmc/articles/6121872. https://doi.org/10.3390/ijerph15081679
  2. Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 2017; 4: 14. https://www.ncbi.nlm.nih.gov/pubmed/28465831. https://www.ncbi.nlm.nih.gov/pmc/articles/5408367. https://doi.org/10.1186/s40779-017-0122-9
  3. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis. 2016; 22(5): 1137-50. https://www.ncbi.nlm.nih.gov/pubmed/27070911. https://www.ncbi.nlm.nih.gov/pmc/articles/4838534. https://doi.org/10.1097/MIB.0000000000000750
  4. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015; 26: 26191. https://www.ncbi.nlm.nih.gov/pubmed/25651997. https://www.ncbi.nlm.nih.gov/pmc/articles/4315779. https://doi.org/10.3402/mehd.v26.26191
  5. Kho ZY, Lal SK. The Human Gut Microbiome - A Potential Controller of Wellness and Disease. Front Microbiol. 2018; 9: 1835. https://www.ncbi.nlm.nih.gov/pubmed/30154767. https://www.ncbi.nlm.nih.gov/pmc/articles/6102370. https://doi.org/10.3389/fmicb.2018.01835
  6. Shevchenko TM, Rozhnyeva IL, Dyklenko TV, Voronkova OS. Comparative characteristics of the composition of microbial associations of the gastrointestinal tract in humans in the norm and during dysbiosis. Regulatory Mechanisms in Biosystems. 2017; 8(4): 497-500. https://doi.org/10.15421/021776
  7. https://doi.org/10.15421/021776
  8. Hosseini JN, Shahabi SH. Gut Microbiota, Dysbiosis and Immune System; A Brief Review. International Journal of Research in Applied and Basic Medical Sciences. 2019; 5(2): 77-81.
  9. Yuji N, Akifumi F, Saori K, Tomohisa T. Gut Dysbiosis and Its Treatment in Patients with Functional Dyspepsia: Evidences in Pathophysiology and Treatment. In book: Functional Dyspepsia. 2018 Aug. p. 155-66. https://www.ncbi.nlm.nih.gov/pubmed/29496336. https://doi.org/10.1007/978-981-13-1074-4_14
  10. Hryn VН. Makro-mikroskopicheskiye osobennosti rel'yefa slizistoy obolochki zheludochno-kishechnogo trakta belykh krys. Svit medytsyny ta biolohiyi. 2019; 4(70): 188-93. [Russian]
  11. Shepitʹko KV. Morfometrychna kharakterystyka stinky klubovoyi kyshky pry vvedenni kriokonservovanoyi platsenty na tli hostroho aseptychnoho zapalennya cherevnoyi porozhnyny u shchuriv. Svit medytsyny ta biolohiyi. 2014; 3(45): 158-61. [Ukrainian]
  12. Hryn VH, Kostylenko YP, Bilash VP, Ryabushko OB. Microscopic structure of albino rats' small intestine. Wiadomości Lekarskie. 2019; 72(5 cz 1): 733-38. https://www.ncbi.nlm.nih.gov/pubmed/31175762
  13. Shepitko КV, Shepitko VІ. Morphometric characteristic of rat small intestine wall In administration of cryopreserved placenta and aseptic inflammation of peritoneum. Bulletin of problems of biology and medicine. 2016; 2: 380-85.
  14. Hryn VH, Kostylenko YuP. Strukturna orhanizatsiya kyshkovykh krypt peyyerovykh blyashok tonkoyi kyshky bilykh shchuriv. Morfologiya. 2019; 13(3): 32-9. [Russian] https://doi.org/10.26641/1997-9665.2019.3.32-39
  15. Hryn VН, Kostylenko YuР, Yushchenko YuР, Lavrenko AV. General comparative anatomy of human and white rat digestive systems: a bibliographic analysis. Wiadomości Lekarskie 2018; 71(8): 1599-602. https://www.ncbi.nlm.nih.gov/pubmed/30684346
  16. Hryn VН, Kostylenko YuР, Yushchenko YuР, Ryabushko MМ, Lavrenko DО. Comparative histological structure of the gastrointestinal mucosa in human and white rat: а bibliographic analysis. Wiadomości Lekarskie. 2018; 71(7): 1398-403.
  17. Hryn VH. Morphometric Characteristics of the Albino Rats' Small Intestine after Administration of Clarithromycin. Ukr. ž. med. bìol. sportu. 2020, 5(2): 58-63. [Ukrainian] https://doi.org/10.26693/jmbs05.02.058
  18. Gromova LV, Borshchov YuYu, Yermolenko YeI, Grefner NM, Alekseyeva AS, Voyeykova AV, et al. Deystviye antimikrobnykh preparatov na kishechnyye pishchevaritel'nyye fermenty u krys. Vestnik Sankt-Peterburgskogo universiteta. Seriya 11. Meditsina. 2012; 3: 161-70. [Russian]
  19. Bilash SM. Morphometric characteristics of pyloric gastric glands at experimental acute gastritis and after administration of 'platex-placental' medication on the background of experimental acute gastritis. Problems of Cryobiology and Cryomedicine. 2013; 1(23): 84-90.
  20. Levy M, Kolodziejczyk A, Thaiss C, Elinav E. Dysbiosis and the immune system. Nature Reviews Immunology. 2017; 17(4): 219-32. https://www.ncbi.nlm.nih.gov/pubmed/28260787. https://doi.org/10.1038/nri.2017.7
  21. Nakaz № 249 Ministerstva osvity i nauky, molodi ta sportu Ukrayiny vid 01.03.2012 r. «Pro zatverdzhennya poryadku provedennya naukovymy ustanovamy doslidiv, eksperymentiv na tvarynakh». Ofitsiynyy visnyk Ukrayiny 06.04.2012; 24: 82. [Ukrainian]
  22. Rybakova AV, Makarova MN. Sanitarnyy kontrol' eksperimental'nykh klinik (vivariyev) v sootvetstvii s lokal'nymi i mezhdunarodnymi trebovaniyami. Mezhdunarodnyy vestnik veterinarii. 2015; 4: 81-9. [Russian]
  23. Antibiotiki i antimikrobnaya terapiya. Antibiotic.ru. [Internet]. [Russian]. Available from: http://www.antibiotic.ru/books/macrolid/mcld08.shtml
  24. Piminov AF, Kuznetsova VM, Suprun EV. Antibiotik-assotsiirovannaya diareya. Pharmacy online.ua. 2012; 38(859). [Еlectronic resource]. [Russian]. Available from: https://www.apteka.ua/article/163162
  25. Ismagilova AF, Chudov IV. Massa, mera dozirovaniya lekarstvennykh sredstv. Veterinarnaya i klinicheskaya farmakologiya, toksikologiya. Ufa; 2011. 20 s. [Russian]
  26. Avtandilov GG. Osnovy kolichestvennoy patologicheskoy anatomii. Monografiya. M: Meditsina; 2002. 240 s. [Russian]
  27. Kaydashev IP, Shinkevich VI. Sovremennyye aspekty izucheniya mukozal'nogo immuniteta. Dental'nyye tekhnologii. 2006; 1-2: 18-21. [Russian]
  28. Khodzhibekov RR, Khokhlova ON, Reyzis AR, Kozhevnikova GM. Plazmotsitoidnyye dendritnyye kletki i ikh rol' v immunopatogeneze virusnykh infektsiy na primere gepatita В. Zhurnal infektologii. 2019; 11(2): 14-9. [Russian] https://doi.org/10.22625/2072-6732-2019-11-2-14-19
  29. Tsvetkov VV, Sologub TV, Tokin II. Biologiya dendritnykh kletok cheloveka i ikh rol' v infektsionnoy patologii. Rossiyskiy mediko-biologicheskiy vestnik imeni akademika IP Pavlova. 2014; 3: 68-74. [Russian]
  30. Drannik GN. Sovremennyye predstavleniya o mekhanizmakh vrozhdennogo i priobretennogo immuniteta i ikh vzaimodeystviye (chast' 1). Liky Ukrayiny. 2013; 4: 22-9. [Russian]
  31. Kaydashev IP. T-kletochnaya regulyatsiya pri atopicheskikh zabolevaniyakh. Klinicheskaya immunologiya. Allergologiya. Infektologiya. 2011; 9-10: 18-21. [Russian]