ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 42 of 44
Up
УЖМБС 2019, 4(2): 272–277
https://doi.org/10.26693/jmbs04.02.272
Biology

Evaluation of Lymphocytes Functional under the Influence of Physical Factors: Electromagnetic Radiation, Cold Factor per se and in Combination (Experimental Study)

Litovchenko O., Mishyna M., Zavgorodnii I., Mozgova Yu.
Abstract

During life man is always exposed to environmental factors that are characterized by possible simultaneous or combined effects. There are certain standard combinations of them. Particular attention should be paid to the possible consequences of the combined effects of factors of different nature that are present in the modern human environment, including adverse microclimatic conditions and electromagnetic radiation (EMR). Temperature difference, especially in the direction to positively low (from +2 to +6 °C), may significantly influence the action of other factors. EMR is a potent environmental factor and has a high biological activity that can affect a person in conditions of high or low environmental temperature. The immune system is a unique, natural defense mechanism and one of the first to respond for extreme environmental factors exposure. Of particular relevance is the study of the immunological mechanisms of the body's response to EMR under cold stress conditions. The article presents with experimental study of phagocytic activity of lymphocytes together with detection of the ability to form neutrophil extracellular traps under the influence of EMR, cold factor per se and in combination. We established that on background of a higher level of neutrophils phagocytic activity under the influence of cold factor on the 5th day its lower values were marked under the influence of EMR per se and in combination. On the 15th day the phagocytic activity significantly increased under the action of EMR. Due to the formation of neutrophilic extracellular traps the exhaustion of phagocytic activity took place on the 30th day of EMR influence, and this may be considered a compensatory reaction of the organism. An immune state formed under combined action of cold factor and EMR differs in the control group and the experimental group due to cold factor and EMR effects per se. This difference consists in a decrease of phagocytic and metabolic activities of neutrophils. Decrease in the level of phagocytic activity is offset by the activation of neutrophilic extracellular traps formation that is formed after the death of neutrophils and perform the function of eliminating antigen from the body. Thus, the per se effects of cold factor and EMR have multidirectional mechanisms of action on the body, that leads to leveling of the immune system's reactions to the combined influence of these factors.

Keywords: phagocytosis, neutrophilic extracellular traps, cold factor, electromagnetic radiation, combine action

Full text: PDF (Ukr) 318K

References
  1. Yarilin AA. Osnovy immunologii. M: Meditsina; 1999. 650 p. [Russian]
  2. Drannik GN. Sovremennye predstavleniya o mekhanizmakh vrozhdennogo i priobretennogo immuniteta i ikh vzaimodeystvie (chast 2). Liki Ukrayini. 2013; 6: 42-7. [Russian]
  3. Dolgushin II, Shishkova YuS, Savochkina AYu. Neytrofilnye lovushki i metody otsenki funktsionalnogo statusa neytrofilov. M: RAMN; 2009. 203 p. [Russian]
  4. Yevropeyska konventsiya pro zakhyst khrebetnykh tvaryn, shcho vykorystovuyutsya dlya doslidnykh ta inshykh naukovykh tsiley. Strasburg, 18 bereznya 1986 roku: ofitsiynyy pereklad [digital resource]. Verkhovna Rada Ukrayiny. Ofitsialnyy web-site. Mizhnarodnyy dokument Rady Yevropy. Available from: http://zakon.rada.gov.ua/ cgi-bin/laws/main.cgi?nreg=994_137 [Ukrainian]
  5. Zakon Ukrayiny vid 21 lyutogo 2006 № 3447-IV. Pro zakhyst tvaryn vid zhorstokogo povodzhennya [digital resource]. Available from: https://zakon.rada.gov.ua/laws/show/3447-15 [Ukrainian]
  6. Council Directive 2010/63/EU of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Communities. 2010; L 276: 33–79.
  7. Nakaz MOZ Ukrayiny vid 12.08.1997 № 755. Pravyla provedennya robit z vykorystannyam eksperymentalnykh tvaryn. 1997. [Ukrainian]
  8. European Study on Community-Acquired Pneumonia Committee. Guidelines for management of adult community-acquired lower respiratory tract infectionis. European Respiratory Society. European Respiratory Journal. 1998; 11(4): 986-91. https://www.ncbi.nlm.nih.gov/pubmed/9623709. https://doi.org/10.1183/09031936.98.11040986
  9. Filatov AV, Bagurin PS, Markova NA, i dr. Issledovanie subpopulyatsionnogo sostava limfotsitov cheloveka s pomoshchyu paneli monoklonalnykh antitel. Gematologiya i transfuziologiya. 1990; 1: 16-9. [Russian]
  10. Duglas SD, Kui PG. Issledovanie fagotsitoza v klinicheskoy praktike. M: Meditsina; 1983. 112 p. [Russian]
  11. Patent 2384844 RU. Sposob obnaruzheniya HBL / Dolgushin II, Andreeva YuS. (RU). opubl 04.2008. [Russian]
  12. Menshikov VV. Laboratornye metody issledovaniya v klinike. M; 1987. 365 p. [Russian]
  13. Rebrova OYu. Statisticheskiy analiz meditsinskikh dannykh. Primenenie paketa prikladnykh programm STATISTICA. M: Media Sfera; 2003. 312 p. [Russian]
  14. Nazıroğlu M, Tokat S, Demirci S. Role of melatonin on electromagnetic radiation-induced oxidative stress and Ca2+ signaling molecular pathways in breast cancer. J Rec Signal Transduct. 2012; 32(6): 290–7. https://www.ncbi.nlm.nih.gov/pubmed/23194197. https://doi.org/10.3109/10799893.2012.737002
  15. Bobritskaya ON, Yugay KD, Zhukova IA, Antipin SL, Vodopyanova LA. Vliyanie elektromagnitnykh izlucheniy na funktsii ogranizma. Problemi zooinzheneriyi ta veterinarnoyi meditsini. 2015; 30(2): 454-9. [Russian]
  16. Lutsenko YuA, Yashin SA. Pervichnye mekhanizmy vozdeystviya elektromagnitnykh izlucheniy i magnitnykh poley na tsirkulyatsiyu krovi (kratkoe soobshchenie). Vestn novykh med tekhnologiy: period teor i nauch-prakt zhurn. 2013; 20(1): 106-7. [Russian]
  17. Susak IP, Ponomarev OA, Shigaev AS. O pervichnykh mekhanizmakh vozdeystviya elektromagnitnykh poley na biologicheskie obekty. Biofizika. 2005; 50(2): 367-70. [Russian]
  18. Madden KS, Felten DL. Experimental basis for neural-immune interactions. Physiol Rev. 1995; 75(1): 77-106. https://www.ncbi.nlm.nih.gov/pubmed/7831399. https://doi.org/10.1152/physrev.1995.75.1.77
  19. Felten SY, Olschowka J. Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synaptic-like contacts on lymphocytes in the splenic white pulp. J Neurosci Res. 1987; 18(1): 37-48. https://www.ncbi.nlm.nih.gov/pubmed/2890771. https://doi.org/10.1002/jnr.490180108
  20. Elenkov IJ, Vizi ES. Presynaptic modulation of release of noradrenaline from the sympathetic nerve terminals in the rat spleen. Neuropharmacology. 1991; 30(12A): 1319-24. https://www.ncbi.nlm.nih.gov/pubmed/1686302. https://doi.org/10.1016/0028-3908(91)90029-B
  21. Elenkov IJ. The Sympathetic Nerve --An Integrative Interface between Two Supersystems: The Brain and the Immune System. Pharmacol Rev. 2000; 52(4): 595-638. https://www.ncbi.nlm.nih.gov/pubmed/11121511