ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 56 of 61
Up
УЖМБС 2018, 3(5): 300–305
https://doi.org/10.26693/jmbs03.05.300
Biology

Influence of Multiprobiotics on the Content of Nitrite Ions and the Activity of Nitric Oxide Synthase in Blood Serum and in the Mucous Membranes of the Stomach and Colon of Rats in Conditions of Prolonged Hypoacidity of Gastric Juice

Pylypenko S., Koval' A.
Abstract

Materials and methods. All animals were divided into 4 experimental groups. The first group of animals served as a control one. They were intraperitoneally administered (in/о) 0.2 mls and perorally (p/o) 0.5 mls of water for injections once a day during 28 days. The animals of the second group were administered omeprazole and p/o 0.5 mls of water for injections once every 24 hours during 28 days. The animals of the third group were administered omeprazole and multiprobiotic "Symbiter® acidophilic" concentrated (Symbiter) once every twenty-four hours during 28 days. The animals of the fourth group were administered omeprazole and multiprobiotic "Apibact®" (Apibact) once every twenty-four hours during 28 days. Results and discussion. The content of nitrite ions in the blood serum did not statistically differ from the control group at daily introduction of omeprazole with the multiprobiotic of "Symbiter" or with the multiprobiotic of "Apibact" during 28 days. In the mucous membrane of stomach the multiprobiotics of "Symbiter" and "Apibact" approximately identically diminished content of nitrite ions by 24.9% (p<0.05) and 20.2% (p<0.05), accordingly, in comparison to the group of rats that during 28th days was administered only omeprazole. Thus, the content of nitrite ions in the mucous membrane of stomach of rats remained high enough and was more than in control group by 83.9% (p<0.05) and 95.4% (p<0.05), accordingly. An analogical picture was observed in the colon. Increase of synthesis of NO2 was the result of increased activity of NOS. It is known that bacterial products in a gastrointestinal tract stimulate activity of іNOS of immunocompetency, ephithelial and other cells. Some bacteria are able to form NO from nitrogen-containing products. Determination of NOS activity in the mucous membranes of stomach and colon showed the increase in the rats mucous membranes of stomach and colon by 146.8% (р<0.05) and 113% (р<0.05) respectively, after 28 daily introductions of omeprazole. After the protracted compatible introduction of omeprazole+ multiprobiotic "Symbiter" and omeprazole+ multiprobiotic "Apibact", NOS activity diminished by 16.3% (p<0.05) and 14.4% (p<0.05), accordingly. As in the case of nitrite ions content, NOS activity did not recommence to the control values. Conclusions. The protracted oppression of secretion of hydrochloride acid in the stomach of rats caused the excessive generation of oxide of nitrogen in the mucous membranes of digestive tract. That showed up in the increase of NOS activity in the mucous membranes of stomach and colon by 146.8% (р<0.05) and 113% (р<0.05) respectively, and the simultaneous increase of concentration of NO2 in the blood serum in the mucous membranes of stomach and colon by 20% (р<0.05), 144% (р<0.05) and 158% (р<0.05) respectively.

Keywords: hypochlorhydria, probiotics, mucous membrane of the stomach, mucous membrane of the colon, nitrite ions

Full text: PDF (Ukr) 338K

References
  1. Bondar TN. Systema L-argynyn/oksyd azota y ymmunytet. Eksperymentalna i klinichna medytsyna. 2009; 3: 4-8. [Russian]
  2. Brandt Z. Statystycheskye metody analyza nablyudenyy. M: Myr, 1975. 312 s. [Russian]
  3. Voronina O, Gryshchuk V, Dzerzhynskyy M. Ultrastrukturnyy analiz klityn slyzovoyi obolonky fundalnogo viddilu shlunka shchuriv pry gipergastrynemiyi. Visnyk Kyyivskogo natsionalnogo universytetu imeni Tarasa Shevchenka. Biologiya. 2007; 49: 13–5. [Ukrainian]
  4. Glants G. Medyko-byologycheskaya statystyka. M: Praktyka, 1999. 459 s. [Russian]
  5. Malyshev YYu. Vvedenye v byokhymyyu oksyda azota: rol oksyda azota v regulyatsyy osnovnykh system organyzma. Ros zhurn gastroenterol gepatol koloproktol. 1997; 7 (1): 49-55. [Russian]
  6. Radchuk OM, ta in. Porivnyalna kharakterystyka vplyvu multyprobiotykiv «Symbiter® atsydofilnyy» kontsentrovanyy ta «Apibakt®» na morfometrychni pokaznyky slyzovoyi obolonky tovstoyi kyshky shchuriv za umov tryvaloyi gipergastrynemiyi. Visnyk morfologiyi. 2009; 15 (1): 7-12. [Ukrainian]
  7. Remyzova MY. Rol oksyda azota v norme y pry patology. Vestn sluzhby Rossyy. 2000; 2: 634-51. [Russian]
  8. Severyna YS. NO: novyy vyglyad na mekhanyzm deystvyya starykh lekarstv. Byomedytsynskaya khymyya. 2005; 51 (1): 19-29. [Russian]
  9. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrit and [15N] nitrate in biological fluids. Anal Biochem. 1982; 126 (1): 131–8. https://www.ncbi.nlm.nih.gov/pubmed/7181105
  10. Bredt DS. Endogenous nitrice oxide synthesis: biological functions and pathophysiology. Free Radical Res. 1999; 31: 577–96. https://www.ncbi.nlm.nih.gov/pubmed/10630682
  11. Kai H, Ito M, Kitadai Y, Chayama K. Chronic gastritis with expression of inducible nitric oxide synthase is associated with high expression of interleukin-6 and hypergastrinaemia. Alimentary Pharmacology & Therapeutics. 2004; 19 (12): 1309-14. https://www.ncbi.nlm.nih.gov/pubmed/15191513. https://doi.org/10.1111/j.1365-2036.2004.01965.x
  12. Rocha BS, Gago B, Barbosa RM, Laranjinha J. Dietary poliphenols generate nitric oxide from nitrite in the stomach and induce smooth muscle relaxation. Toxicology. 2009; 265 (1-2): 41-8. https://www.ncbi.nlm.nih.gov/pubmed/19778575. https://doi.org/10.1016/j.tox.2009.09.008
  13. Wolf G, Arendt EK, Pfähler U, Hammes WP. Heme-dependent and heme-independent nitrite reduction by lactic acid bacteria results in different N-containing products. Int J Food Microbiol. 1990; 10: 323–9. https://doi.org/10.1016/0168-1605(90)90079-K
  14. Hevel JM, White KA, Marletta MA. Purification of the inducible murine macrophage nitric oxide synthase. J Biol Chem. 1991; 266 (34): 22789–91. https://www.ncbi.nlm.nih.gov/pubmed/1720773
  15. Salzman A, Denenberg AG, Ueta I, O'Connor M, Linn SC, Szabó C. Induction and activity of nitric oxide synthase in cultured human intestinal epithelial monolayers. Am J Physiol. 1996; 270: G565-73. https://www.ncbi.nlm.nih.gov/pubmed/8928785. https://doi.org/10.1152/ajpgi.1996.270.4.G565
  16. Kröncke KD, Fehsel K, Kolb-Bachofen V. Inducible nitric oxide synthase in human diseases. Clin Exp Immunol. 1998; 113: 147–56. https://www.ncbi.nlm.nih.gov/pubmed/9717962. https://www.ncbi.nlm.nih.gov/pmc/articles/1905037
  17. Michel T, Feron O. Nitric oxide synthases: which, were, why, and how? J Clin Invest. 1997; 100: 2146-52. https://www.ncbi.nlm.nih.gov/pubmed/9410890. https://www.ncbi.nlm.nih.gov/pmc/articles/508408. https://doi.org/10.1172/JCI119750
  18. Niedbala W, Cai B, Liew FY. Role of nitric oxide in the regulation of T cell functions. Ann Rheum Dis. 2006; 65 (Suppl 3): ii37-40. https://www.ncbi.nlm.nih.gov/pubmed/17038470. https://www.ncbi.nlm.nih.gov/pmc/articles/1798386. https://doi.org/10.1136/ard.2006.058446
  19. Shah V, Lyford G, Gores G, Farrugia G. Nitric oxide in gastrointestinal health and disease. Gastroenterology. 2004; 126 (3): 903-13. https://www.ncbi.nlm.nih.gov/pubmed/14988844
  20. Palmer RM, Ashton DS, Moncada S, Palmer RM. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988; 333 (6174): 664-6. https://www.ncbi.nlm.nih.gov/pubmed/3131684. https://doi.org/10.1038/333664a0
  21. Peranzoni E, Marigo I, Dolcetti L, Ugel S, Sonda N, Taschin E, Mantelli B, Bronte V, Zanovello P. Role of arginine metabolism in immunity and immunopathology. Immunobiology. 2007; 212 (9-10): 795-812. https://www.ncbi.nlm.nih.gov/pubmed/18086380. https://doi.org/10.1016/j.imbio.2007.09.008
  22. Schubert ML. Gastric exocrine and endocrine secretion. Curr Opin Gastroenterol. 2009; 25 (6): 529-36. https://www.ncbi.nlm.nih.gov/pubmed/19726980. https://doi.org/10.1097/MOG.0b013e328331b62a
  23. Shibolet O, Karmeli F, Eliakim R, Swennen E, Brigidi P, Gionchetti P, Campieri M, Morgenstern S, Rachmilewitz D. Variable response to probiotics in two models of experimental colitis in rat. Inflamm Bowel Dis. 2002; 8 (6): 8399–406. https://www.ncbi.nlm.nih.gov/pubmed/12454615
  24. Tøttrup A, Ny L, Alm P, Larsson B, Forman A, Andersson KE. The role of the L-arginine/nitric oxide pathway for relaxation of the human lower oesophagal sphincter. Acta Physiol Scand. 1993; 149: 451-9. https://www.ncbi.nlm.nih.gov/pubmed/8128894. https://doi.org/10.1111/j.1748-1716.1993.tb09642.x
  25. Wallace JL, Miller MJS. Nitric oxide in mucosa defence: a little goes a long way. Gastroenterology. 2000; 119 (2): 512-20. https://www.ncbi.nlm.nih.gov/pubmed/10930387
  26. Vanderwinden JM, Mailleux P, Schiffmann SN, Vanderhaeghen JJ, De Laet MH. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. New Engl J Med. 1992; 327: 511-5. https://www.ncbi.nlm.nih.gov/pubmed/1378938. https://doi.org/10.1056/NEJM199208203270802