ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 45 of 61
Up
УЖМБС 2018, 3(5): 237–241
https://doi.org/10.26693/jmbs03.05.237
Medicine. Reviews

Nephelometry of Biological Tissue

Ostafiychuk D. I. 1, Biryukova T. V. 1, Boysaniuk S. I. 2
Abstract

The article deals with a fundamental analysis of the Ukrainian authors and foreign experimental and theoretical sources in the direction of optical diagnostics of bioobjects. We described optical characterization methods of formation of layered images of biological objects. They are the following: - optical coherent tomography, which helps receiving internal images biotechnology (coordinate distributions of intensities); - polarization sensitive optical coherent tomography, which is aimed at getting the distribution azimuths and ellipticity of polarization of images of bioobjects on different depths; - polarization nepelometry based on matrix analysis light scattering on a biological object (Müller matrix). The method of optical coherent tomography uses low-coherence interferometry to obtain internal images at a given depth. Polarizing sensitive optical coherent tomography uses information embedded in polarization states of laser radiation, providing high spatial resolution of information on the state of reflected radiation polarization. An important result of using this method is the possibility of obtaining polarizing image maps of a biological object at different depths. Along with the statistical approaches in optical diagnostics, methods of fractal analysis of the geometric structure of phase-inhomogeneous layers were used. It is shown that fractal analysis can be used to describe many natural phenomena. The prospect is the possibility of diagnosis and classification of phase-inhomogeneous surfaces of biological tissues on statistical and fractal studies in the field of scattered radiation. The study carried out the analysis of the diagnostics and classification of rough surfaces of biological tissues for the fractal and statistical studies of the field of diffracted radiation. As a result, we proposed the model of consideration of biological tissue as an amorphous – crystalline model of construction of biotechnics from optical parameters of their architectonic grid. In the framework of this model, the dependence of the angular distributions of the indicatrix elements of the Müller matrix of biodegradation on the optical parameters of their architectonic grid was substantiated. It helped establish the relationship between the orientation distributions and the magnitude of the birefringence of the biotin composition and the relative values of the elements of the Müller matrix. The method of stoopolarimetric differentiation of pathological changes in the architecture of structured bioassays was developed on this basis. Müller matrix modeling and diagnostics of the optico-geometric structure of biosphere were supplemented and developed by the use of the matrix operator of Jones to describe the processes of transformation of the amplitude-phase structure of laser coherent radiation. As a result, new information was obtained on the structure of biosynthesis in the form of phase and orientational tomograms of their architectonics.

Keywords: lasers, nephelometry, polarization, Mueller matrix

Full text: PDF (Ukr) 196K

References
  1. Antonyuk OP, Ushenko OG. Lazerna polyarymetrychna diagnostyka v morfologiyi. «Morfologichni doslidzhennya – vyklyky suchasnosti». Zbirnyk tez dopovidey Naukovo-praktychnoyi konferentsiyi. Sumy, 23-24 kvitnya 2015 roku. Sumy: Sum derzh un-t, 2015. s. 89-92. [Ukrainian]
  2. Dubolazov OV, Ushenko YuO. Lazerna polyarymetriya polikrystalichnykh merezh plazmy krovi lyudyny. Chernivtsi, 2014. 251 c. [Ukrainian]
  3. Tuzhanskyy SYe, Lysenko GL. Systemy lazernoyi videopolyarymetriyi dlya avtomatyzovanogo kontrolyu parametriv neodnoridnykh biotkanyn: monografiya. Vinnytsya: VNTU, 2011. 156 s. [Ukrainian]
  4. Ushenko OG, Pishak VP, Pishak OV. Doslidzhennya mikrostruktury kistkovoyi tkanyny u polyaryzovanomu lazernomu svitli. Medychni perspektyvy. 2000; V (4): 3-7. [Ukrainian]
  5. Ushenko OG, Pishak OV, Pishak VP. Doslidzhennya dynamiky patologichnykh zmin dyspersiyi ta kontrastu kogerentnykh zobrazhen kistkovoyi tkanyny. Ukr med almanakh. 2000; 3 (4): 170-3. [Ukrainian]
  6. Ushenko OG, Pishak OV, Pishak VP. Polyaryzatsiyno-fazova vizualizatsiya i obrobka kogerentnykh zobrazhen arkhitekturnoyi struktury kistkovoyi tkanyny. Odeskyy medychnyy zhurnal. 2000; 3: 6-7. [Ukrainian]
  7. Ushenko OG, Burkovets DM, Olar OI. Avtokorelyatsiyna struktura polyaryzatsiynykh obraziv biotkanyn. Naukovyy visnyk Chernivetskogo universytetu. Fizyka. Elektronika. 2002; 151: 13-8. [Ukrainian]
  8. Angelsky OV, Burkovets DN, Maksimyak PP, Hanson SG. On the applicapibily of the singular optics concept for diegnostics of random and fractal rough surfaces. Appl Opt. 2003: 4519-40. https://doi.org/10.1364/AO.42.004529
  9. Angelsky OV, Ushenko AG, Burcovets DN, Ushenko YuA. Polarization visualization and selection of biotissue image two-layer scattering medium. J Biomed Opt. 2005; 10 (1): 014010. https://doi.org/10.1117/1.1854674
  10. Angelsky OV, Ushenko AG, Ushenko YuA, Ushenko YeG, Tomka YuYa, Pishak VP. Polarization-correlation mapping of biological tissue coherent images. J Biomed Opt. 2005 Nov-Dec; 10 (6): 064025. https://www.ncbi.nlm.nih.gov/pubmed/16409090. https://doi.org/10.1117/1.2148251
  11. Brown JH, West GB. Scaling in biology. Oxford University Press. 2000. 24 p. Available from: http://biology.unm.edu/jhbrown/Documents/Publications/BrownWest&Enquist2000CHScalingInBiology.pdf
  12. Cowin SC. How is a tissue built? J Biomed Eng. 2000; 122: 553-68. https://www.ncbi.nlm.nih.gov/pubmed/15255763. https://doi.org/10.1146/annurev.bioeng.6.040803.140250
  13. Fernandez E, Jelinek HF. Use of fractal theory in neuroscienct: methods, adyantages and potential problems. Methods. 2001; 24: 309-21. https://www.ncbi.nlm.nih.gov/pubmed/11465996. https://doi.org/10.1006/meth.2001.1201
  14. Jacques SL, Roman JR, Lee K. Imaging superficial tissues with Polarized light. Lasers in Surg.& Med. 2000; 26: 119-29. https://www.ncbi.nlm.nih.gov/pubmed/10685085. https://doi.org/10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.0.CO;2-Y
  15. Jyzwicki R, Patorski K, Angelsky OV, Ushenko AG, Burkovets DN, Ushenko YuA. Automatic polarimetric system for early medical diagnosis by Biotissue testing. Optica Applicata. 2002; 32 (4).
  16. Mishchenko MI, Travis LD, Lacis AA. Scattering, Absorption and emission of light by small particles. Cambridge University. Press, 2002. 122 r.
  17. Shuliang Jiao, Wurong Yu, George Stoica, Lihong V Wang. Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography. Opt Lett. 2002; 27: 101-3. https://doi.org/10.1364/OL.27.000101
  18. Shuliang Jiao, Gang Yao, Lihong V Wang. Depth-resolved two–dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Appl Opt. 2000; 39: 6318-24. https://doi.org/10.1364/AO.39.006318
  19. Shuliang Jiao, Wurong Yu, George Stoica, Lihong V Wang. Optical-fiber- based Mueller optical coherence tomography. Opt Lett. 2003; 28: 1206-8. https://doi.org/10.1364/OL.28.001206
  20. Tuchin VV. Handbook of Coherent-Domain Optikal Methods. Biomedical Diagnostics, Environmental and Material Science. Kluwer Academic Publishers, 2004. 1003 p.
  21. Ushenko AG. Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering. Opt y spektr. 2001; 91 (6): 937-40. https://doi.org/10.1134/1.1429711
  22. Ushenko AG. Laser polarimetry of polarization-phase statistics moments of the objects field of optically anisotropic scattering layers. Opt y spektr. 2001; 91 (2): 313-7. https://doi.org/10.1134/1.1397917
  23. Ushenko AG. Polarization introscopy of phase-inhomogeneous layers. Proc SPIE. 2002; 4900: 1323-6. https://doi.org/10.1117/12.484545
  24. Ushenko AG, Pishak VP. Laser Polarimetry of Biological Tissue, Principler and Applications. In: Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental and Material Science. Ed V Tuchin. Kluwer Academic Publishers, 2004. 67 p.