ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 48 of 59
Up
УЖМБС 2016, 1(1): 230–237
https://doi.org/10.26693/jmbs01.01.230
Physical training and Sport

Mechanisms of Antioxidant’s Action on the Physical Performance of Athletes

Gunina Larisa1, Milashyus Kazys2
Abstract

The goal ‒ systematization of data on the mechanisms of natural antioxidant’s action on metabolic bases of formation stimulation of physical performance of athletes. Methods. An analysis of the data of scientific and methodical literature and Internet. Thus, oxidative stress accompanying the intense physical loads in sportsmen causes violations of a structural-functional state of cellular and subcellular membranes, which is a factor provoking the ejection of lysosomal enzymes with proteinase activity outward and the accumulation of toxic products of the metabolism in the circulation, on the one hand, and the disturbance of genetic processes that can control these homeostatic reconstructions, on the other hand. This substantiates the expediency of the application of antioxidants in the presence of oxidative stress and allows one to more thoroughly describe the various, slightly studied till now, mechanisms of implementation of a positive influence of these pharmacological substances on the physical workability of sportsmen. The established facts can become a basis for the development of finer mechanisms of metabolic influence of antioxidants on the organisms of sportsmen and their ergogenic activity during a training and competitions. A decrease in the physical workability of sportsmen is associated with the appearance of oxidative stress, which is revealed by the activation of the processes of peroxide oxidation of lipids with a simultaneous depression of the intrinsic antioxidative system of organism. The manifestations of oxidative stress on the level of cellular membranes represent adequately the total magnitude of oxidative stress. Antioxidative properties of the studied pharmacological agents of natural origin are coupled with the presence of a membranotropic action, which allows one to refer the preparations with such biological effects to ergogenic ones. Violation of a structural-functional state of membranes of erythrocytes due to oxidative stress causes a disturbance of their shape and volume, which influences mediately the process of transport of oxygen to muscular tissues of sportsmen and, thus, decreases the physical workability. Increase in the permeability of cellular and subcellular membranes is accompanied by the ejection of lysosomal proteinases from cells and provokes the process of limited proteolysis, which causes the accumulation of toxic products of the uncompleted metabolism and influences negatively the stimulation of the workability. The accumulation of prooxidant factors can induce the apoptosis of cells, which becomes a factor decreasing the physical workability under physical loads. Establishment of the antioxidative action of probiotics creates the additional metabolic preconditions for a growth of the physical workability of sportsmen. Application of natural antioxidants with metabolitotropic character, which have different structures and belong to different pharmacological classes, is accompanied by a stimulation of the physical workability, in the first turn, due to the improvement of a state of cellular and subcellular membranes.

Keywords: sport, training exercises, oxidative stress, antioxidative means, structural-functional state of cellular membranes, detoxicative properties, cardiotropic effect

Full text: PDF (Ua) 142K

References
  1. Gunina LM. Obosnovanie tselesoobraznosti ispolzovaniya probiotikov u kvalifitsirovannyih sportsmenov. Nauchnoe obosnovanie fizicheskogo vospitaniya, sportivnoy trenirovki i podgotovki kadrov po fizicheskoy kulture i sportu, turizmu. Materialyi HII Mezhdunar nauchnoy sessii. Minsk. 2011; 2: 138-41.
  2. Gunina LM. Otsenka effektivnosti probioticheskogo funktsionalnogo produkta "Laminolakt Sportivnyiy" pri intensivnyih fizicheskih zagruzkah. Problemi ekologichnoyi ta medichnoyi genetiki i klinichnoyi imunologiyi: zb nauk prats. 2012; 6 (114): 334-42.
  3. Gunina LM, Oliynik SA, Ivanov SV. Biohimichni ta strukturno-funktsionalni osoblivosti membran eritrotsitiv i anemiya u sportsmeniv. Fiziol zhurnal. 2007; 53 (3): 43-50.
  4. Gunina LM. Vzaemozv'yazok agregatsiynih vlastivostey eritrotsitiv, strukturno-funktsionalnogo stanu yih membran i fizichnoyi pratsezdatnosti sportsmeniv za okisnogo stresu. Krovoobig ta gemostaz. 2010; 3: 15-8.
  5. Gunina LM. Vpliv suktsinatu natriyu na eritrotsiti za okisnogo stresu pri intensivnih fizichnih navantazhennyah. Fiziol zhurnal. 2011; 56 (6): 71-9.
  6. Gunina LM. Eritrotsiti za okisnogo stresu pri fizichnih navantazhennyah: oglyad literaturi. Perspektivi meditsini ta biologiyi. 2013; 5 (1): 7-13.
  7. Gunina LM, Nosach OV. Metabolichni aspekti vplivu fizichnih navantazhen: oksidativniy stres ta adaptatsiya. Ukr zhurnal klinichnoyi ta laboratornoyi meditsini. 2012; 4: 237-43.
  8. Gunina LM, Chekman IS, Nebesna TYu, Gorchakova NO. Kvantovo-himichniy analiz vlastivostey ta otsinka dotsilnosti zastosuvannya omega-3 polinenasichenih zhirnih kislot za fizichnih navantazhen. Fiziol zhurnal. 2013; 59 (1): 68-77.
  9. Lyahov OM, Gunina LM, Oliynik SA. Doslidzhennya mehanizmiv vzaemodiyi tseruloplazminu z monosharovimi plivkami z distearoyilfosfatidil-holinu. Ukr biohim zhurnal. 2007; 79 (3): 97-100.
  10. Sheremetev YuA, Popovicheva AN, Egorihina MN, Levin GYa. Izuchenie vzaimosvyazi mezhdu izmeneniem formyi i agregatsiey eritrotsitov cheloveka. Biofizika. 2013; 58 (2): 264-8.
  11. Antonova N, Riha P, Ivanov I, Gluhcheva Y. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology. Clin Hemorheol Microcirc. 2011; 49 (1-4): 441-50. https://doi.org/10.3233/CH-2011-1494
  12. Boyle AJ, Shih H, Hwang J, Ye J, Lee B, Zhang Y, Kwon D, Jun K, Zheng D, Sievers R, Angeli F, Yeghiazarians Y, Lee R. Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy. Exp Gerontol. 2011; 46 (7): 549-59. https://doi.org/10.1016/j.exger.2011.02.010
  13. Deminice R, Sicchieri T, Mialich MS, Francine Milani, Paula P Ovidio, Alceu A Jorda. Oxidative stress biomarker responses to an acute session of hypertrophy-resistance traditional interval training and circuit training. J Strength Cond Res. 2011; 25 (3): 798-804. https://www.ncbi.nlm.nih.gov/pubmed/20581699. https://doi.org/ 10.1519/JSC.0b013e3181c7bac6
  14. Donde A, Wong H, Frelinger J, Karron Power, John R Balmes, Mehrdad Arjomandi. Effects of exercise on systemic inflammatory, coagulatory, and cardiac autonomic parameters in an inhalational exposure study. Occup Environ Med. 2012; 54 (4): 466-70. https://doi.org/10.1097/JOM.0b013e318246f1d4
  15. Ellison G, Wu RZ, Wu HP. Effects of carvedilol on cardiomyocyte apoptosis in autoimmune myocarditis in mice. Cardiology. 2011; 49 (5): 376-80.
  16. Friedmann-Bette B, Schwartz FR , Eckhardt H, Kinscherf Ralf. Similar changes of gene expression in human skeletal muscle after resistance exercise and multiple fine needle biopsies. J Appl Physiol. 2012; 112 (2): 289-95. https://doi.org/10.1152/japplphysiol.00959.2011
  17. González-Alonso J. ATP as a mediator of erythrocyte-dependent regulation of skeletal muscle blood flow and oxygen delivery in humans. J Physiol. 2012; 590 (20): 5001-13. https://doi.org/10.1113/jphysiol.2012.235002
  18. Gunina Larysa M, Chekman Ivan S, Nebesna Tetyana Yu, Gorchakova Nadia O. Efficiency of ω-3 Polyunsaturated Fatty Acids at Physical Exercise. Int J Physiol Pathophysiol. 2013; 4 (4): 273-83. https://doi.org/10.1615/IntJPhysPathophys.v4.i4.10
  19. Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002; 29 (3): 218-22. https://www.ncbi.nlm.nih.gov/pubmed/11906487
  20. Hsu CC, Wang JJ. L-ascorbic acid and alpha-tocopherol attenuates liver ischemia-reperfusion induced of cardiac function impairment. Transplant Proc. 2012; 44 (4): 933-6. https://doi.org/10.1016/j.transproceed.2012.01.098
  21. Hüttemann M, Lee I, Perkins GA, et al. (-)-Epicatechin is associated with increased angiogenic and mitochondrial signalling in the hindlimb of rats selectively bred for innate low running capacity. Clin Sci (Lond). 2013; 124 (11): 663-74. https://doi.org/10.1042/CS20120469
  22. Jamart C, Benoit N, Raymackers JM, Kim HJ, Kim CK, Francaux M. Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise. Eur J Appl Physiol. 2012; 112 (8): 3173-7. https://doi.org/10.1007/s00421-011-2287-3
  23. Kenyon CL, Basaraba RJ, Bohn AA. Influence of endurance exercise on serum concentrations of iron and acute phase proteins in racing sled dogs. J Am Vet Med Assoc. 2011: 239 (9): 1201–10. https://doi.org/10.2460/javma.239.9.1201
  24. Kolodjieva V, Yafaev R, Yermolenko E, Suvorov A. Incidence of virulence determinants in enterococcal strains of probiotic and clinical origin. New Insights Into and Old Enemy. 2006; 13: 367-70. https://doi.org/10.1016/j.ics.2005.10.028
  25. Leandro CG, Ribeiro da Silva W, Dos Santos JA, et al. Moderate physical training attenuates muscle-specific effects on fibre type composition in adult rats submitted to a perinatal maternal low-protein diet. Eur J Nutr. 2011; 11 (4): 123-34.
  26. Liu WY, He W, H. Li. Exhaustive training increases uncoupling protein 2 expression and decreases Bcl-2/Bax ratio in rat skeletal muscle. Oxid Med Cell Longev. 2013: 780719. https://doi.org/10.1155/2013/780719
  27. Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, Antonini A, Martelli F, Capogrossi MC. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 2011; 18 (10): 1628-39. https://doi.org/10.1038/cdd.2011.42
  28. Mila-Kierzenkowska C, Woźniak A, Szpinda M, Tomasz Boraczyński, Bartosz Woźniak, Paweł Rajewski, Paweł Sutkowy. Effects of thermal stress on the activity of selected lysosomal enzymes in blood of experienced and novice winter swimmers. Scand J Clin Lab Invest. 2012; 72 (8): 635-41. http://dx.doi.org/10.3109/00365513.2012.727214 https://doi.org/10.3109/00365513.2012.727214
  29. Oliynyk SA, Gunina LM. The effect of Rithmocor on the state of erythrocyte membranes and athlete's adaptation to intensive training loads. Acta kinesiologiae Universitatis Tartuensis. 2008; 13(Suppl): 100-1.
  30. Park MY, Jeong YJ, Kang GC, Mi-Hwa Kim, Sun Hun Kim, Hyun-Ju Chung, Ji Yeon Jung, and Won Jae Kim. Nitric oxide-induced apoptosis of human dental pulp cells is mediated by the mitochondria-dependent pathway. Korean J Physiol Pharmacol. 2014; 18 (1): 25-32. https://doi.org/10.4196/kjpp.2014.18.1.25
  31. Psilander N, Wang L, Westergren J, Tonkonogi M, Sahlin K. Mitochondrial gene expression in elite cyclists: effects of high-intensity interval exercise. Eur J Appl Physiol. 2010; 110 (3): 597-606. https://doi.org/10.1007/s00421-010-1544-1
  32. Ramel A, Martinez JA , Kiely M, et al. Moderate consumption of fatty fish reduces diastolic blood pressure in overweight and obese European young adults during energy restriction. Nutrition. 2010; 26 (2): 168-74. https://doi.org/10.1016/j.nut.2009.04.002
  33. Ribeiro J, Almeida-Dias A, Ascensão A, Magalhães J, Oliveira AR, Carlson J, Mota J, Appell HJ, Duarte J. Hemostatic response to acute physical exercise in healthy adolescents. J Sci Med Sport. 2007;10(3):164-9. https://www.ncbi.nlm.nih.gov/pubmed/16844409. https://doi.org/10.1016/j.jsams.2006.06.001
  34. Schwedhelm E, Maas R, Troost R, Böger RH. Clinical pharmacokinetics of antioxidants and their impact on systemic oxidative stress. Clin Pharmacokinet. 2003;42(5):437-59. https://www.ncbi.nlm.nih.gov/pubmed/12739983. https://doi.org/10.2165/00003088-200342050-00003
  35. Siu PM, Bryner RW, Martyn JK, Always SE. Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J. 2004;18(10):1150-2. https://doi.org/10.1096/fj.03-1291fje
  36. Tabarowski Z, Dabrowski Z, Marchewka A, Tabarowski Z, Bilski J, Jaśkiewicz J, Gdula-Argasińska J, Głodzik J, Lizak D, Kepińska M. Effects of cold water swimming on blood rheological properties and composition of fatty acids in erythrocyte membranes of untrained older rats. Folia Biol (Krakow). 2011;59(3-4):203-9. https://www.ncbi.nlm.nih.gov/pubmed/22195477
  37. Vandenabeele P, Vanden Berghe T, Festjens N. Caspase inhibitors promote alternative cell death pathways. Sci STKE. 2006;358:44. https://doi.org/10.1126/stke.3582006pe44
  38. Wang J-S, Huang Y-H. Effects of exercise intensity on lymphocyte apoptosis induced by oxidative stress in men. Eur J Appl Physiol. 2005;95:290-91. https://doi.org/10.1007/s00421-005-0005-8
  39. Zhu Z, Sierra A, Burnett CM, Biyi Chen, Ekaterina Subbotina, Siva Rama Krishna Koganti, Zhan Gao, Yuejin Wu,1 Mark E. Anderson, Long-Sheng Song, et al. Sarcolemmal ATP-sensitive potassium channels modulate skeletal muscle function under low-intensity workloads. J Gen Physiol. 2014;143(1):119-34. https://doi.org/10.1085/jgp.201311063