ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 1 of 55
Up
JMBS 2022, 7(5): 8–14
https://doi.org/10.26693/jmbs07.05.008
Medicine. Reviews

Epidemiology of Metabolic Syndrome and Concepts of Mechanisms of its Development

Aliiev R. B.
Abstract

The purpose of the study was to analyze literary sources with the study of modern views on the epidemiology of the metabolic syndrome and pro-inflammatory concepts of the mechanisms of the development of insulin resistance and type 2 diabetes mellitus, as one of its components. Materials and methods. Analytical and bibliosemantic methods were used in the research. During the scientific search, 53 sources of modern domestic and foreign literature were reviewed and analyzed. Results and discussion. Metabolic syndrome is the most common disorder of endocrine regulation, which is one of the threatening health care problems of the 21st century. In recent years, it remains almost the most important problem of endocrinology, cardiology, dietology, internal and family medicine. In recent decades, foreign researchers assign the most important role in the mechanism of metabolic syndrome development to adipocytes of adipose tissue. Most scientists consider insulin resistance to be the pathogenetic basis of metabolic syndrome. Insulin resistance manifests itself as the resistance of body cells to the action of insulin and occurs as a result of a violation of the insulin signal in these cells, the implementation of which is carried out by a membrane-mediated mechanism. Molecular manifestations of insulin resistance should be sought among the components of the insulin cascade, which includes the receptor, the substrate of the insulin receptor (IRS protein), the PI3-kinase cascade, and the GLUT-4 glucose transporter activation system. It should be noted that within the framework of the relationship between obesity, inflammation and insulin resistance, the following cytokines, TNF-α and IL-6, deserve more attention. TNF-α reduces the tyrosine protein kinase activity of the insulin receptor, the insulin-stimulated phosphorylation of its substrates (serine phosphorylation) and the expression of matrix ribonucleic acid GLUT-4 in muscle and adipose tissues, which is accompanied by impaired glucose transport. Also, TNF-α reduces the expression of the lipoprotein lipase gene, stimulates lipogenesis and synthesis of fatty acids, which additionally increases the degree of IP and obesity. IL-6 reduces the expression of the transporter GLUT-4 and the substrate of the insulin receptor, while also having an anti-inflammatory effect due to the reduction of TNF-α and interferon. Under the influence of this cytokine, the level of glycerol and free fatty acids in blood serum increases, which is accompanied by a lipotoxic effect on β-cells of the pancreas. Conclusion. Metabolic syndrome is a pathological process, the spread of which has become epidemic both in developed foreign countries and in Ukraine. One of the important components of the pathogenesis of the metabolic syndrome is insulin resistance, the mechanisms of which, in particular, are related to pro-inflammatory cytokine-mediated mechanisms affecting insulin signaling, glucose transport, involved in pathological changes in lipid synthesis and metabolism, as well as pro-oxidant and cytotoxic processes

Keywords: metabolic syndrome, epidemiology, mechanisms

Full text: PDF (Ukr) 273K

References
  1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity. Circulation. 2009 Oct 20;120(16):1640-5. PMID: 19805654. https://doi.org/10.1161/CIRCULATIONAHA.109.192644
  2. Camus JP. Goutte, diabete, hyperlipemie: un trisyndrome metabolique [Gout, diabetes, hyperlipemia: a metabolic trisyndrome]. Rev Rhum Mal Osteoartic. 1966 Jan-Feb;33(1):10-4. [French]. PMID: 5910828
  3. Mehnert H, Kuhlmann H. Hypertonie und Diabetes mellitus [Hypertension and diabetes mellitus]. Deutsch Med J. 1968 Aug 20;19(16):567-71. PMID: 5702732
  4. Reaven GM. Banting lecture: Role of insulin resistance in human disease. Diabetes. 1988;37:1595-1607. PMID: 3056758. https://doi.org/10.2337/diab.37.12.1595
  5. Kaplan NM. The deadly quartet: upper-body obesity, glucose intolerance, hypertriglyceridemia and hypertension. Arch Intern Med. 1989;149:1514-1520. PMID: 2662932. https://doi.org/10.1001/archinte.149.7.1514
  6. Alberti KGMM, Zimmet P, Shaw J. Metabolic Syndrome- A New World-Wide Definition. A Consensus Statement from the International Diabetes Federation. Diabetic Med. 2006;23:469-480. PMID: 16681555. https://doi.org/10.1111/j.1464-5491.2006.01858.x
  7. Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am. 2004 Jun;33(2):351-75, table of contents. PMID: 15158523. https://doi.org/10.1016/j.ecl.2004.03.005
  8. Chazova YE, Mychka VB. Osnovnye pryntsypy dyahnostyky y lechenyya metabolycheskoho syndroma [Basic principles of diagnosis and treatment of metabolic syndrome]. Serdtse. 2005;4(5):232-235. [Russian]
  9. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444(7121):847-853. PMID: 17167472. PMCID: PMC3212857. https://doi.org/10.1038/nature05483
  10. Wajchenberg BL, Giannella-Neto D, da Silva ME, Santos RF. Depotspecific hormonal characteristics of subcutaneous and visceral adipose tissue and their relation to the metabolic syndrome. Horm Metab Res. 2002;34:616-621. PMID: 12660870. https://doi.org/10.1055/s-2002-38256
  11. Drapkina OM, Korneeva ON, Palatkina LO. Adipokiny i serdechno-sosudistye zabolevaniya: patoheneticheskie paralleli i terapevticheskie perspektivy [Adipokines and cardiovascular diseases: pathogenic parallels and therapeutic perspectives]. Arterialnaya Gipertenziya. 2011;17(3):203-208. [Russian]
  12. Apovian CM, Gokce N. Obesity and cardiovascular disease. Circulation. 2012;125(9):1178-1182. PMID: 22392865. PMCID: PMC3693443. https://doi.org/10.1161/CIRCULATIONAHA.111.022541
  13. International Diabetes Federation. Diabetes is spiralling out of control. Available from: http://www.IDF.org
  14. Nemtsova VD. Sakharnyi diabet i vnezapnaya smert: reshennye i nereshennye voprosy [Diabetes mellitus and sudden death: resolved and unresolved issues]. Svit meditsini ta biolohiyi. 2015;2(50):206-211. [Russian]
  15. Meier M, Hummel M. Cardiovascular disease and intensive glucose control in type 2 diabetes mellitus: moving practice toward evidence-based strategies. Vasc Health Risk Manag. 2009;5:859-871. PMID: 19898642. PMCID: PMC2773745. https://doi.org/10.2147/VHRM.S4808
  16. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008 May;57(5):1349-54. PMID: 18299315. https://doi.org/10.2337/db08-0063
  17. Wallis RH, Wang K, Marandi L, Hsieh E, Ning T, Chao GY, et al. Type 1 diabetes in the BB rat: a polygenic disease. Diabetes. 2009 Apr;58(4):1007-17. PMID: 19168599. PMCID: PMC2661594. https://doi.org/10.2337/db08-1215
  18. American Diabetes Association. Classification and Diagnosis of Diabetes. Diabetes Care. 2017;40(Suppl 1):S11-S24. PMID: 27979889. https://doi.org/10.2337/dc17-S005
  19. Demidova TYu. Ozhirenie i insulinorezistentnost [Obesity and insulin resistance]. Trudnyi patsient. 2006;7:87-93. [Russian]
  20. Yun JE, Won S, Sung J, Jee SH. Impact of Metabolic Syndrome Independent of Insulin Resistance on the Development of Cardiovascular Disease. Circ J. 2012;76(10):2443-8. PMID: 22813750. https://doi.org/10.1253/circj.CJ-12-0125
  21. Ye J. Mechanisms of insulin resistance in obesity. Front Med. 2013;7(1):14-24. PMID: 23471659. PMCID: PMC3936017. https://doi.org/10.1007/s11684-013-0262-6
  22. Tkachuk VA, Vorotnikov AV. Molekulyarnye mekhanizmy razvitiya rezistentnosti k insulinu [Molecular Mechanisms of Insulin Resistance Development]. Sakharnyi diabet. 2014;17(2):29-40. [Russian]. https://doi.org/10.14341/DM2014229-40
  23. Mayorov AYu. Insulinorezistentnost v patoheneze sakharnoho diabeta 2 tipa. Voprosy patoheneza [Insulin resistance in the pathogenesis of type 2 diabetes]. Sakharnyi diabet. 2011;1: 35-43. [Russian]
  24. Saini V. Molecular mechanisms of insulin resistance in type 2diabetes mellitus. World J Diabetes. 2010;1(3):68-75. PMID: 21537430. PMCID: PMC3083885. https://doi.org/10.4239/wjd.v1.i3.68
  25. Youngren JF. Regulation of insulin receptor function. Cell Mol Life Sci. 2007;64(7-8):873-891. PMID: 17347799. https://doi.org/10.1007/s00018-007-6359-9
  26. Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest. 1989 Apr;83(4):1168-73. PMID: 2649512. PMCID: PMC303803. https://doi.org/10.1172/JCI113997
  27. Reaven GM, Laws A. Insulin Resistance: The Metabolic Syndrome X. Springer Science & Business Media; 1999. p. 51-58.
  28. Bodnar PM, Kononenko LO, Kyriyenko DV, Kobylyak NM. Tsukrovyi diabet iz monohennym typom uspadkuvannya: klinika, diahnostyka ta likuvannya (chastyna 2) [Diabetes mellitus with monogenic type of inheritance: clinic, diagnosis and treatment (part 2)]. Endokrynologia. 2015;20(2):533 -544. [Ukrainian]
  29. Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr. 2003;89:3-9. PMID: 12568659. https://doi.org/10.1079/BJN2002763
  30. Watson RT, Pessin JE. Intracellular organization of insulin signaling and GLUT-4 translocation. Recent Prog Horm Res. 2001;56:175-193. PMID: 11237212. https://doi.org/10.1210/rp.56.1.175
  31. Bae SS, Cho H, Mu J, Birnbaum MJ. Isoform-specific regulation of insulin-dependent glucose uptake by Akt / protein kinase B. J Biol Chem. 2003;278: 49530-49536. PMID: 14522993. https://doi.org/10.1074/jbc.M306782200
  32. Taylor SI, Moller DE. Mutations of the insulin receptor gene. In: Insulin resistance. Ed by DE. NY: Wiley; 1993. p. 83-123.
  33. Cannon B, Nedergaard J. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev. 2004;84:277-359. PMID: 14715917. https://doi.org/10.1152/physrev.00015.2003
  34. Coppack SW. Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc. 2001 Aug;60(3):349-56. PMID: 11681809. https://doi.org/10.1079/PNS2001110
  35. Reilly MP, Rohatgi A, McMahon K, Wolfe ML, Pinto SC, Rhodes T, Girman C, et al. Plasma cytokines, metabolic syndrome, and atherosclerosis in humans. J Investig Med. 2007 Jan;55(1):26-35. PMID: 17441409. https://doi.org/10.2310/6650.2007.06013
  36. Winkler G, Cseh K. Molecular mechanisms and correlations of insulin resistance, obesity, and type 2 diabetes mellitus. Orv Hetil. 2009;150(17):771-780. PMID: 19362933. https://doi.org/10.1556/oh.2009.28608
  37. Cawthorn WP, Sethi JK. TNF-alpha and adipocyte biology. FEBS Lett. 2008;582(1):117-131. PMID: 18037376. PMCID: PMC4304634. https://doi.org/10.1016/j.febslet.2007.11.051
  38. Hansel B, P. Giral P, Nobecourt E, Chantepie S, Bruckert E, Chapman MJ, et al. Metabolic Syndrome Is Associated with Elevated Oxidative Stress and Dysfunctional Dense High-Density Lipoprotein Particles Displaying Impaired Antioxidative Activity. J Clin Endocrinol Metab. 2004 Oct;89(10):4963-71. PMID: 15472192. https://doi.org/10.1210/jc.2004-0305
  39. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-867. PMID: 17167474. https://doi.org/10.1038/nature05485
  40. Bastard JP, Maachi M, Van Nhieu JT, Jardel C, Bruckert E, Grimaldi A, et al. Episode tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J Clin Endocrinol Metab. 2002 May;87(5):2084-9. PMID: 11994345. https://doi.org/10.1210/jcem.87.5.8450
  41. Bays H, Mandarino L, DeFronzo RA. Role of adipocytes, FFA, and ectopic fat in the pathogenesis of type 2 diabetes mellitus: PPAR agonists provide a rational therapeutic approach. J Clin Endocrinol Metab. 2004 Feb;89(2):463-78. PMID: 14764748. https://doi.org/10.1210/jc.2003-030723
  42. Stephens JM, Lee J, Pilch PF. Tumor Necrosis Factor-_-induced Insulin Resistance in 3T3-L1 Adipocytes Is Accompanied by a Loss of Insulin Receptor Substrate-1 and GLUT4 Expression without a Loss of Insulin Receptor-mediated Signal Transduction. J Biol Chem. 1997;272(2):971-976. PMID: 8995390. https://doi.org/10.1074/jbc.272.2.971
  43. Noronha IL, Niemir Z, Stein H, Waldherr R. Cytokines and growth factors in rena disease. Nephrol Dial Transplant. 1995;10(6)775-786.
  44. Ruan H, Lodisch HF. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis faktor-alpha. Cytokine Growth Factor Rev. 2003;14(5):447-455. https://doi.org/10.1016/S1359-6101(03)00052-2
  45. De Alvaro C, Teruel T, Hernandez R, Lorenzo M. Tumor necrosis factor alpha produced insulin resistance in skeletal muscle by activation of inhibitor kappaB-kinase in ap38 MARK dependant manner. J Biol Chem. 2004;279(17):17070-17078. PMID: 14764603. https://doi.org/10.1074/jbc.M312021200
  46. Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab. 2000;11(6):212-217. https://doi.org/10.1016/S1043-2760(00)00272-1
  47. Lo J, Bernstein LE, Canavan B, Torriani M, Jackson MB, Ahima RS, et al. Effects of TNF-a neutralization on adipocytokines and skeletal muscle adiposity in the metabolic syndrome. Am J Physiol Endocrinol Metab. 2007 Jul;293(1):E102-9. PMID: 17374698. PMCID: PMC3196534. https://doi.org/10.1152/ajpendo.00089.2007
  48. Monroy A, Kamath S, Chavez AO, Centonze VE, Veerasamy M, Barrentine A, et al. Impaired regulation of the TNF-alpha converting enzyme/tissue inhibitor of metalloproteinase 3 proteolytic system in skeletal muscle of obese type 2 diabetic patients: a new mechanism of insulin resistance in humans. Diabetologia. 2009;52(10):2169-2181. PMID: 19633828. PMCID: PMC2845986. https://doi.org/10.1007/s00125-009-1451-3
  49. Belousova ON, Sirotina SS, Yakunchenko TI, Zhernakova NI. Molekulyarnye i heneticheskie mekhanizmy patoheneza sakharnoho diabeta 2 tipa [Molecular and genetic mechanisms of the pathogenesis of type 2 diabetes]. Nauchnye vedomosti Belhorodskoho hosudarstvennoho universiteta. 2015;16(213):12-19. [Russian]
  50. Dominguez H, Storgaard H, Rask-Madsen C, Hermann T, Ihlemann N, Nielsen D, et al. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res. 2008;42(6):517-525. PMID: 16155368. https://doi.org/10.1159/000088261
  51. Formoso G, Taraborrelli M, Guagnano MT, D'Adamo M, Di Pietro N, Tartaro A, et al. Magnetic resonance imaging determined visceral fat reduction associates with enhanced Il-10 plasma levels in calorie restricted obese subjects. PLoS One. 2012;7(12):52. PMID: 23300769. PMCID: PMC3530499. https://doi.org/10.1371/journal.pone.0052774
  52. Al-Dokhi LM. Adipokines and etiopathology of metabolic disorders. Saudi Med J. 2009;30:1123-1132.
  53. Pedersen BK, Febbraio MA. Interleukin-6 does have a beneficial role in insulin sensitivity and glucose homeostasis. J Appl Physiol. 2007;102(2):814-819. PMID: 17068210. https://doi.org/10.1152/japplphysiol.01208.2006