ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 2 of 55
Up
JMBS 2022, 7(5): 15–20
https://doi.org/10.26693/jmbs07.05.015
Medicine. Reviews

Intermittent Pneumatic Compression in Rehabilitation and Sports Medicine: Review

Buchinsky O. S. 1, Varvinsky O. P. 2, Zaitsev D. V. 3
Abstract

The purpose of the study was to characterize the clinical value of intermittent pneumatic compression in sports medicine according to the scientific literature. Materials and methods. The English-language publications refereed by the PubMed electronic database, by the keyword “intermittent pneumatic compression”, concerning sports achievements, physiology of athletes, sports rehabilitation and also the treatment of injuries were analyzed. Results and discussion. Hardware for intermittent pneumatic compression develops rapidly in sports rehabilitation, while a significant number of practitioners use intermittent pneumatic compression in combination with other means, which makes it difficult to assess its effectiveness. Traumatic risk is a reality of the professional activity of athletes. In several reviews of the literature, it was shown that the use of intermittent pneumatic compression after injuries can reduce thrombus formation, swelling and duration of preoperative preparation for fractures, reduce swelling and improve joint mobility after fractures, improve wound and fracture healing. During the rehabilitation period, intermittent pneumatic compression allows to reduce limb dysfunction after sprain, increase joint mobility, and enhance the effectiveness of occupational therapy measures. Conclusion. Skeletal muscles are undoubtedly the target organ of intermittent pneumatic compression, but the optimal parameters of exposure need to be clarified. During exercise, intermittent pneumatic compression improves vascular conductivity, and during the recovery period it reduces muscle proteolysis, increases blood flow and tissue oxygenation. Intermittent pneumatic compression does not appear to affect muscle strength and performance recovery. Intermittent pneumatic compression may help reduce delayed muscle pain syndrome, but the optimal conditions for such an effect need to be investigated. In trauma, in particular sprains and fractures, the use of intermittent pneumatic compression can reduce pain and the need for narcotic analgesics, especially in the early stages. The use of intermittent pneumatic compression can reduce swelling and shorten the duration of preoperative preparation for fractures, subsequently improving joint mobility, wound and fracture healing. After surgery or removal of immobilizers, intermittent pneumatic compression reduces swelling, improves limb function, and reduces hospital stay. When using intermittent pneumatic compression in work with athletes, the practitioner must also take into account its reparative, adaptive and other general effects. Intermittent pneumatic compression is a promising sports medicine tool, but the existing data are completely insufficient to make firm recommendations

Keywords: intermittent pneumatic compression, sports medicine, traumatology

Full text: PDF (Ukr) 262K

References
  1. Cranston AW, Driller MW. Investigating the use of an intermittent sequential pneumatic compression arm sleeve for recovery after upper-body exercise. J Strength Cond Res. 2022 Jun 1;36(6):1548-1553. PMID: 35622105. https://doi.org/10.1519/JSC.0000000000003680
  2. Martínez-Guardado I, Rojas-Valverde D, Gutiérrez-Vargas R, Ugalde Ramírez A, Gutiérrez-Vargas JC, Sánchez-Ureña B. Intermittent pneumatic compression and cold water immersion effects on physiological and perceptual recovery during multi-sports international championship. J Funct Morphol Kinesiol. 2020 Jun 30;5(3):45. PMID: 33467261. PMCID: PMC7739238. https://doi.org/10.3390/jfmk5030045
  3. Heapy AM, Hoffman MD, Verhagen HH, Thompson SW, Dhamija P, Sandford FJ, et al. A randomized controlled trial of manual therapy and pneumatic compression for recovery from prolonged running - an extended study. Res Sports Med. 2018 Jul-Sep;26(3):354-364. PMID: 29513036. https://doi.org/10.1080/15438627.2018.1447469
  4. Hoffman MD, Badowski N, Chin J, Stuempfle KJ. A randomized controlled trial of massage and pneumatic compression for ultramarathon recovery. J Orthop Sports Phys Ther. 2016 May;46(5):320-6. PMID: 27011305. https://doi.org/10.2519/jospt.2016.6455
  5. Stedge HL, Armstrong K. The effects of intermittent pneumatic compression on the reduction of exercise-induced muscle damage in endurance athletes: A critically appraised topic. J Sport Rehabil. 2021 Jan 8;30(4):668-671. PMID: 33418535. https://doi.org/10.1123/jsr.2020-0364
  6. Zuj KA, Prince CN, Hughson RL, Peterson SD. Superficial femoral artery blood flow with intermittent pneumatic compression of the lower leg applied during walking exercise and recovery. J Appl Physiol (1985). 2019 Aug 1;127(2):559-567. PMID: 31268826. https://doi.org/10.1152/japplphysiol.00656.2018
  7. Zuj KA, Prince CN, Hughson RL, Peterson SD. Enhanced muscle blood flow with intermittent pneumatic compression of the lower leg during plantar flexion exercise and recovery. J Appl Physiol (1985). 2018 Feb 1;124(2):302-311. PMID: 29122964. PMCID: PMC5867371. https://doi.org/10.1152/japplphysiol.00784.2017
  8. Haun CT, Roberts MD, Romero MA, Osburn SC, Healy JC, Moore AN, et al. Concomitant external pneumatic compression treatment with consecutive days of high intensity interval training reduces markers of proteolysis. Eur J Appl Physiol. 2017 Dec;117(12):2587-2600. PMID: 29075862. https://doi.org/10.1007/s00421-017-3746-2
  9. Draper SN, Kullman EL, Sparks KE, Little K, Thoman J. Effects of intermittent pneumatic compression on delayed onset muscle soreness (DOMS) in long distance runners. Int J Exerc Sci. 2020 Feb 1;13(2):75-86.
  10. Kim K, Kargl CK, Ro B, Song Q, Stein K, Gavin TP, et al. Neither peristaltic pulse dynamic compressions nor heat therapy accelerate glycogen resynthesis after intermittent running. Med Sci Sports Exerc. 2021 Nov 1;53(11):2425-2435. PMID: 34107509. https://doi.org/10.1249/MSS.0000000000002713
  11. Wiecha S, Jarocka M, Wiśniowski P, Cieśliński M, Price S, Makaruk B, et al. The efficacy of intermittent pneumatic compression and negative pressure therapy on muscle function, soreness and serum indices of muscle damage: a randomized controlled trial. BMC Sports Sci Med Rehabil. 2021 Nov 13;13(1):144. PMID: 34774089. PMCID: PMC8590753. https://doi.org/10.1186/s13102-021-00373-2
  12. Martin JS, Friedenreich ZD, Borges AR, Roberts MD. Preconditioning with peristaltic external pneumatic compression does not acutely improve repeated Wingate performance nor does it alter blood lactate concentrations during passive recovery compared with sham. Appl Physiol Nutr Metab. 2015 Nov;40(11):1214-7. PMID: 26489050. https://doi.org/10.1139/apnm-2015-0247
  13. Martin JS, Friedenreich ZD, Borges AR, Roberts MD. Acute effects of peristaltic pneumatic compression on repeated anaerobic exercise performance and blood lactate clearance. J Strength Cond Res. 2015 Oct;29(10):2900-6. PMID: 25756325. https://doi.org/10.1519/JSC.0000000000000928
  14. Oliver A, Driller M. The use of upper-body intermittent sequential pneumatic compression arm sleeves on recovery from exercise in wheelchair athletes. Am J Phys Med Rehabil. 2021 Jan 1;100(1):65-71. PMID: 32618754. https://doi.org/10.1097/PHM.0000000000001521
  15. Martin JS, Kephart WC, Haun CT, McCloskey AE, Shake JJ, Mobley CB, et al. Impact of external pneumatic compression target inflation pressure on transcriptome-wide RNA expression in skeletal muscle. Physiol Rep. 2016 Nov;4(22):e13029. PMID: 27884954. PMCID: PMC5357997. https://doi.org/10.14814/phy2.13029
  16. Cochrane DJ, Booker HR, Mundel T, Barnes MJ. Does intermittent pneumatic leg compression enhance muscle recovery after strenuous eccentric exercise? Int J Sports Med. 2013 Nov;34(11):969-74. PMID: 23606340. https://doi.org/10.1055/s-0033-1337944
  17. Won YH, Ko MH, Kim DH. Intermittent pneumatic compression for prolonged standing workers with leg edema and pain. Medicine (Baltimore). 2021 Jul 16;100(28):e26639. PMID: 34260560. PMCID: PMC8284752. https://doi.org/10.1097/MD.0000000000026639
  18. Su EP, Perna M, Boettner F, Mayman DJ, Gerlinger T, Barsoum W, et al. A prospective, multi-center, randomised trial to evaluate the efficacy of a cryopneumatic device on total knee arthroplasty recovery. J Bone Joint Surg Br. 2012 Nov;94(11 Suppl A):153-6. PMID: 23118406. https://doi.org/10.1302/0301-620X.94B11.30832
  19. Leegwater NC, Willems JH, Brohet R, Nolte PA. Cryocompression therapy after elective arthroplasty of the hip. Hip Int. 2012 Sep-Oct;22(5):527-33. PMID: 23112075. https://doi.org/10.5301/HIP.2012.9761
  20. Waterman B, Walker JJ, Swaims C, Shortt M, Todd MS, Machen SM, et al. The efficacy of combined cryotherapy and compression compared with cryotherapy alone following anterior cruciate ligament reconstruction. J Knee Surg. 2012 May;25(2):155-60. PMID: 22928433. https://doi.org/10.1055/s-0031-1299650
  21. Schnetzke M, El Barbari J, Schüler S, Swartman B, Keil H, Vetter S, et al. Vascular impulse technology versus elevation for the reduction of swelling of lower extremity joint fractures: results of a prospective randomized controlled study. Bone Joint J. 2021 Apr;103-B(4):746-754. PMID: 33789481. https://doi.org/10.1302/0301-620X.103B4.BJJ-2020-1260.R1
  22. Airaksinen O. Changes in posttraumatic ankle joint mobility, pain, and edema following intermittent pneumatic compression therapy. Arch Phys Med Rehabil. 1989 Apr;70(4):341-4.
  23. Murgier J, Cassard X. Cryotherapy with dynamic intermittent compression for analgesia after anterior cruciate ligament reconstruction. Preliminary study. Orthop Traumatol Surg Res. 2014 May;100(3):309-12. PMID: 24679367.https://doi.org/10.1016/j.otsr.2013.12.019
  24. Ramesh M, Morrissey B, Healy JB, Roy-Choudhury S, Macey AC. Effectiveness of the A-V impulse hand pump. J Bone Joint Surg Br. 1999 Mar;81(2):229-33. PMID: 10204926. https://doi.org/10.1302/0301-620X.81B2.8868
  25. Airaksinen O, Kolari PJ, Miettinen H. Elastic bandages and intermittent pneumatic compression for treatment of acute ankle sprains. Arch Phys Med Rehabil. 1990 May;71(6):380-3.
  26. Allen CS, Flynn TW, Kardouni JR, Hemphill MH, Schneider CA, Pritchard AE, et al. The use of a pneumatic leg brace in soldiers with tibial stress fractures - a randomized clinical trial. Mil Med. 2004 Nov;169(11):880-4. PMID: 15605935. https://doi.org/10.7205/MILMED.169.11.880
  27. Alkner BA, Halvardsson C, Bråkenhielm G, Eskilsson T, Andersson E, Fritzell P. Effect of postoperative pneumatic compression after volar plate fixation of distal radial fractures: a randomized controlled trial. J Hand Surg Eur Vol. 2018 Oct;43(8):825-831. PMID: 29504445. https://doi.org/10.1177/1753193418760493
  28. Ibrahim M, Ahmed A, Mohamed WY, El-Sayed Abu Abduo S. Effect of compression devices on preventing deep vein thrombosis among adult trauma patients: A systematic review. Dimens Crit Care Nurs. 2015 Sep-Oct;34(5):289-300. PMID: 26244245. https://doi.org/10.1097/DCC.0000000000000127
  29. Clarkson R, Mahmoud SSS, Rangan A, Eardley W, Baker P. The use of foot pumps compression devices in the perioperative management of ankle fractures: Systematic review of the current literature. Foot (Edinb). 2017 Jun;31:61-66. PMID: 28549283. https://doi.org/10.1016/j.foot.2017.03.002
  30. Winge R, Bayer L, Gottlieb H, Ryge C. Compression therapy after ankle fracture surgery: a systematic review. Eur J Trauma Emerg Surg. 2017 Aug;43(4):451-459. PMID: 28624992. https://doi.org/10.1007/s00068-017-0801-y
  31. Khanna A, Gougoulias N, Maffulli N. Intermittent pneumatic compression in fracture and soft-tissue injuries healing. Br Med Bull. 2008;88(1):147-56. PMID: 18596049. https://doi.org/10.1093/bmb/ldn024
  32. Caschman J, Blagg S, Bishay M. The efficacy of the A-V Impulse system in the treatment of posttraumatic swelling following ankle fracture: a prospective randomized controlled study. J Orthop Trauma. 2004 Oct;18(9):596-601. PMID: 15448447. https://doi.org/10.1097/00005131-200410000-00003
  33. Dodds MK, Daly A, Ryan K, D'Souza L. Effectiveness of 'in-cast' pneumatic intermittent pedal compression for the pre-operative management of closed ankle fractures: a clinical audit. Foot Ankle Surg. 2014 Mar;20(1):40-3. PMID: 24480498. https://doi.org/10.1016/j.fas.2013.09.004
  34. Myerson MS, Henderson MR. Clinical applications of a pneumatic intermittent impulse compression device after trauma and major surgery to the foot and ankle. Foot Ankle. 1993 May;14(4):198-203. PMID: 8103031. https://doi.org/10.1177/107110079301400404
  35. Myerson MS, Juliano PJ, Koman JD. The use of a pneumatic intermittent impulse compression device in the treatment of calcaneus fractures. Mil Med. 2000 Oct;165(10):721-5. PMID: 11050865. https://doi.org/10.1093/milmed/165.10.721
  36. Olavi A, Kolari PJ, Esa A. Edema and lower leg perfusion in patients with post-traumatic dysfunction. Acupunct Electrother Res. 1991;16(1-2):7-11. PMID: 1674836. https://doi.org/10.3727/036012991816358044
  37. Park SH, Silva M. Intermittent pneumatic soft tissue compression: Changes in periosteal and medullary canal blood flow. J Orthop Res. 2008 Apr;26(4):570-7. PMID: 17985392. https://doi.org/10.1002/jor.20509
  38. Albertazzi P, Steel SA, Bottazzi M. Effect of intermittent compression therapy on bone mineral density in women with low bone mass. Bone. 2005 Nov;37(5):662-8. PMID: 16099227. https://doi.org/10.1016/j.bone.2005.06.006
  39. Diwu W, Hu G, Zhou M, Bi L, Yan M, Wei H, et al. Effects of different intensities of intermittent pneumatic soft-tissue compression on bone defect repair. BMC Musculoskelet Disord. 2022 Apr 30;23(1):403. PMID: 35490215. PMCID: PMC9055722. https://doi.org/10.1186/s12891-022-05341-6
  40. Hewitt JD, Harrelson JM, Dailiana Z, Guilak F, Fink C. The effect of intermittent pneumatic compression on fracture healing. J Orthop Trauma. 2005 Jul;19(6):371-6. PMID: 16003194. https://doi.org/10.1097/01.bot.0000161239.81128.05
  41. Park SH, Silva M. Effect of intermittent pneumatic soft-tissue compression on fracture-healing in an animal model. J Bone Joint Surg Am. 2003 Aug;85(8):1446-53. PMID: 12925623. https://doi.org/10.2106/00004623-200308000-00004
  42. Dahl J, Li J, Bring DK, Renström P, Ackermann PW. Intermittent pneumatic compression enhances neurovascular ingrowth and tissue proliferation during connective tissue healing: a study in the rat. J Orthop Res. 2007 Sep;25(9):1185-92. PMID: 17469190. https://doi.org/10.1002/jor.20390
  43. Schizas N, Li J, Andersson T, Fahlgren A, Aspenberg P, Ahmed M, et al. Compression therapy promotes proliferative repair during rat Achilles tendon immobilization. J Orthop Res. 2010 Jul;28(7):852-8. PMID: 20058263. https://doi.org/10.1002/jor.21066
  44. Greve K, Domeij-Arverud E, Labruto F, Edman G, Bring D, Nilsson G, et al. Metabolic activity in early tendon repair can be enhanced by intermittent pneumatic compression. Scand J Med Sci Sports. 2012 Aug;22(4):e55-63. PMID: 22591506. https://doi.org/10.1111/j.1600-0838.2012.01475.x
  45. Abdul Alim M, Domeij-Arverud E, Nilsson G, Edman G, Ackermann PW. Achilles tendon rupture healing is enhanced by intermittent pneumatic compression upregulating collagen type I synthesis. Knee Surg Sports Traumatol Arthrosc. 2018 Jul;26(7):2021-2029. PMID: 28668970. PMCID: PMC6061441. https://doi.org/10.1007/s00167-017-4621-8
  46. Svensson BH, Frellsen MB, Basse PN, Bliddal H, Caspers J, Parby K. [Effect of pneumatic compression in connection with ergotherapeutic treatment of Colles' fracture. A clinical controlled trial]. Ugeskr Laeger. 1993 Feb 15;155(7):463-6. [Danish]