ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 56 of 67
Up
JMBS 2020, 5(3): 417–425
https://doi.org/10.26693/jmbs05.03.417
Biology

Analysis of Heart Rate Variability in Young Men with Hypocapnia Breathing

Zavhorodnia V. A., Vitko S. M., Kudiy L. I, Kovalenko S. O.
Abstract

Assessment of heart rate variability is a scientific basis for predicting physical ability and controlling a person’s functional state. Different respiratory structures have been found to affect heart rate variability. Therefore, the purpose of the research was to study the individual features of heart rate variability with breathing at a rate of 30 cycles per minute in healthy young men. Material and methods. Breathing capnogram was recorded on DATEX NORMOCAP (Datex, Finland) capnography; cardio intervals were recorded by Polar W.I.N.D. Link cardio sensor, Polar Wearlink W.I.N.D receiver in Polar Protrainer 5.0 (Polar ElectroOY, Finland) program in 78 healthy young men. The analysis of the native records of rhythmograms indicates the individual features of heart rate regulation in young men. Results and discussion. The level of SDNN, rMSSD and the indicators of spectral analysis with hyperventilation of t-R-R intervals reliably decrease. Reliably higher values of statistical and spectral analysis of heart rate variability than initial ones were observed at the end of recovery. However, tLF frequency was not restored after hyperventilation. Higher values of SDNN and rMSSD were found in the subjects with medium and high levels of PetCO2 both at rest and with hypocapnia. During the recovery, the difference between the studied statistical indicators was leveled between the groups. Reliable difference of tLF was observed with the analysis of the wave structure of heart rate in the background between men with low and high levels of PetCO2 and at the end of recovery between people with low and medium levels of PetCO2. The highest values of the studied indicators were observed in parasympathotonics among the men with different level of autonomic tonus at rest, with hyperventilation and recovery. Distinct differences between normotonics and vagonotics were leveled with hypocapnia; reliable difference of HFnorm indicators was observed in the subjects of normotonics; reliably higher values of both HFnorm and HF were observed in vagonotics compared to sympathotonics. Conclusion. Therefore, changes in the statistical indicators of cardiac rhythm and its spectral components in hypocapnia breathing have significant individual differences. One of the factors that determine them may be the initial level of PetCO2 and autonomic tone.

Keywords: heart rate variability, autonomic tone, PetCO2, hyperventilation, hypocapnia

Full text: PDF (Ukr) 492K

References
  1. Bisconti AV, Devoto M, Venturelli M, Bryner R, Olfert IM, Chantler PD, et al. Respiratory muscle training positively affects vasomotor responsein young healthy women. PLoSOne. 2018; 13(9): e0203347. https://www.ncbi.nlm.nih.gov/pubmed/30252845. https://www.ncbi.nlm.nih.gov/pmc/articles/6155502. https://doi.org/10.1371/journal.pone.0203347
  2. Li C, Chang Q, Zhang J, Chai W. Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension. Medicine (Baltimore). 2018; 97(18): e0639. https://www.ncbi.nlm.nih.gov/pubmed/29718876. https://www.ncbi.nlm.nih.gov/pmc/articles/6392805. https://doi.org/10.1097/MD.0000000000010639
  3. Hinterberger T, Walter N, Doliwa C, Loew T. The brain's resonance with breathing-decelerated breathing synchronizes heart rate and slow cortical potentials. J Breath Res. 2019; 13(4): 046003. https://www.ncbi.nlm.nih.gov/pubmed/31071704. https://doi.org/10.1088/1752-7163/ab20b2
  4. Dvoenosov VG, Yusupov RA, Torshin VI, Starshinov YuP, Radysh IV. Fiziologicheskie osobennosti reaktsii kardiorespiratornoy sistemy u studentok s razlichnym urovnem legochnoy ventilyatsii v usloviyakh giperventilyatsii [Physiological characteristics of the reaction of the cardiorespiratory system in students with different levels of pulmonary ventilation under hyperventilation]. Tekhnologii zhivykh sistem. 2014; 11(5): 47-52. [Russian]
  5. Nekrasova MM. Izmeneniya entsefalograficheskikh parametrov i spektralnykh pokazateley variabelnosti serdechnogo ritma pri provedenii funktsionalnykh prob u voditeley so stazhem [Changes in encephalographic parameters and spectral indicators of heart rate variability during functional tests for experienced drivers]. Zdorov'e naseleniya i sreda obitaniya. 2016; 7(280): 28-30. [Russian]
  6. Trubachev VV, Trubacheva VS. Variabelnost serdechnogo ritma pri navyazannnom dykhanii u sportsmenov [Heart rate variability in forced breathing in athletes]. Dnevnik kazanskoy meditsinskoy shkoly. 2019; 1: 82-5. [Russian]
  7. Kovalenko SO. Kharakteristika ta teoretichni osnovi metodiv analizu variabelnosti sertsevogo ritmu [Characteristics and Theoretical Foundations of Methods to Analyze Heart Rate Variability]. Ukrayinskiy zhurnal meditsini, biologiyi ta sportu. 2017; 2: 223-33. [Ukrainian] https://doi.org/10.26693/jmbs02.02.223
  8. Zavgorodnya VA, Kovalenko SO, Kudiy LI. Vpliv giperventilyatsiyi na dinamiku rivnya karbon (IV) oksidu v alveolyarnomu povitri [Influence of hyperventilation on the dynamics of carbon (IV) oxide level in alveolar air]. Visnik Cherkaskogo universitetu. Seriya: Biologichni nauki. 2018; 2: 34-9. [Ukrainian] https://doi.org/10.31651/2076-5835-2018-1-2-34-39
  9. Chuyan EN, Mironyuk IS, Biryukova EA. Upravlyaemoe dykhanie s individualno podobrannoy chastotoy izmenyaet vremennuyu organizatsiyu serdechnogo ritma v infradiannom diapazone [Controlled breathing with an individually selected frequency changes the temporal organization of the heart rhythm in the infraradian range]. Uchenye zapiski Krymskogo federalnogo universiteta imeni VI Vernadskogo. Biologiya. Khimiya. 2018; 4(1): 148-57. [Russian]
  10. Kudiy LI, Ribalko AV, Zaporozhets TV. Khvilova struktura pokaznikiv gemodinamiki pri riznomu vikhidnomu rivni chastoti dikhannya u cholovikiv [Wave structure of hemodynamic indices at different baseline respiratory rate in men]. Visnik Cherkaskogo universitetu. Seriya: Biologichni nauki. 2018; 1: 54-61. [Ukrainian] https://doi.org/10.31651/2076-5835-2018-1-1-54-61
  11. Chuyan EN, Mironyuk IS, Biryukova EA, Zayachnikova TV, Ravaeva MYu. Upravlenie dykhaniem modifitsiruet svyaz variabelnosti serdechnogo ritma volonterov s variatsiyami geliogeomagnitnykh faktorov [Respiratory management modifies the relationship of the heart rate variability of volunteers with variations of heliogeomagnetic factors]. Fizioterapiya, balneologiya i reabilitatsiya. 2015; 14(6): 35-41. [Russian]
  12. Soloveva AV, Byalovskiy YuYu, Rakita DR. Sostoyanie legochnogo gazoobmena pri metabolicheskom syndrome [The state of pulmonary gas exchange in metabolic syndrome]. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta. 2015; 1(53): 104-7. [Russian
  13. Guzii OV. Izmeneniya reaktivnosti pokazateley serdechnogo ritma na upravlyaemoe dykhanie pri trenirovkakh obshchey vynoslivosti [Changes in the reactivity of heart rate indicators to controlled breathing during general endurance training]. Zaporozhskiy meditsinskiy zhurnal. 2018; 1: 36-40. [Russian] https://doi.org/10.14739/2310-1210
  14. Dimitriev DA, Saperova EV, Dimitriev AD, Indeykina OS. Vliyanie dykhaniya na chastote rezonansa na nelineynye dinamiki variabelnosti serdechnogo ritma [The effect of respiration at the resonance frequency on the nonlinear dynamics of heart rate variability]. Fiziologiya cheloveka. 2019; 1(45): 64-72. [Russian]
  15. Trubachev VV, Gorbunov AV, Trubacheva VS, Nemtseva MS, Ogorodnikova MS. Analiz respiratorno-serdechnogo vzaimodeystviya u sportsmenov i nesportsmenov pri navyazannoy chastote dykhaniya [Analysis of respiratory-cardiac interaction in athletes and non-athletes with an imposed respiratory rate]. Rossiyskiy fiziologicheskiy zhurnal im IM Sechenova. 2015; 101(2): 238-48. [Russian]
  16. Malik M, Hnatkova K, Huikuri HV, Lombardi F, Schmidt G, Zabel M. CrossTalk proposal: heart rate variability is a valid measure of cardiac autonomic responsiveness. J Physiol. 2019; 597(10): 2595-8. https://www.ncbi.nlm.nih.gov/pubmed/31006862. https://doi.org/10.1113/JP277500