ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 2 of 67
Up
JMBS 2020, 5(3): 20–31
https://doi.org/10.26693/jmbs05.03.020
Medicine. Reviews

Current Ideas about the Pathogenesis and Morphofunctional State of the Thymus in Myasthenia Gravis

Belozerov I. V., Protsenko O. S., Remnyova N. A., Kudrevich O. M., Yakimenko A. S.
Abstract

The article presents the information on the latest scientific data regarding the pathogenesis and morphofunctional state of the thymus of patients with myasthenia gravis. Myasthenia gravis has been actively studied since 1970, especially after the detection of antibodies against AChR (autoantibodies to acetylcholine receptors). Acquired autoimmune myasthenia gravis should be distinguished from congenital, which has similar clinical manifestations not due to immunopathological dysregulation, but due to genetic mutations. In this study, the term "myasthenia gravis" refers exclusively to acquired autoimmune myasthenia gravis. Although congenital myasthenia gravis is caused by mutations in genes encoding components of the neuromuscular synapse, the genetic contribution to acquired autoimmune myasthenia gravis is less obvious. Several references to families with multiple cases of myasthenia gravis are found in the literature, however, the increased risk of developing myasthenia gravis or other autoimmune diseases among relatives of patients with myasthenia gravis supports the idea of a genetic predisposition that promotes increased susceptibility to myasthenia gravis. Changes in neuromuscular synapse in patients with myasthenia gravis include enlargement of the synaptic cleft, reduction of AChR and flattening of the postsynaptic membrane, the so-called violation of synaptic architecture. These changes develop at the expense of persistent autoimmune attacks on the postsynaptic membrane. Depending on the specific autoantibodies involved in the autoimmune attack, myasthenia gravis can be roughly divided into 3 categories: AChR myasthenia gravis, MuSK myasthenia gravis, and Seronegative myasthenia gravis. Numerous studies have greatly improved our understanding of the etiology, pathogenesis, morphology, and principles of the treatment of myasthenia gravis. Antigenic targets were identified and described, a new classification of myasthenia gravis was developed, and the basics were laid for the study of the chemokine system, which plays an important role in the pathogenesis of myasthenia gravis. However, it is still not clear why thymectomy is relatively effective in patients with thymic lympho-follicular hyperplasia and virtually ineffective in its atrophy or even in its normal state. No clear clinical morphological criteria have been developed to predict the course of the disease and the effectiveness of thymectomy. Conclusion. Despite the fact that myasthenia gravis is a very rare disease, its disabling effect, which dramatically reduces the quality and life expectancy of patients, forces the scientific community to look for different ways to address the etiology, pathogenesis, morphology and treatment of myasthenia gravis.

Keywords: thymus, myasthenia gravis, autoimmune disease

Full text: PDF (Ukr) 281K

References
  1. Mantegazza R, Cordiglieri C, Consonni A, Baggi F. Animal models of myasthenia gravis: utility and limitations. IJGM. 2016 Mar; 9: 53-64. https://www.ncbi.nlm.nih.gov/pubmed/27019601. https://www.ncbi.nlm.nih.gov/pmc/articles/4786081. https://doi.org/10.2147/IJGM.S88552
  2. Bardakov SN, Zhyvolupov SA, Rashydov NA. Ymmunologycheskaya y klynycheskaya geterogennost myastenyy. Vestnyk rossyyskoy voenno-medytsynskoy akademyy. 2016; 1(53): 154-64. [Russian]
  3. Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010 Dec; 10(1): 46. Https://www.ncbi.nlm.nih.gov/pubmed/20565885. https://www.ncbi.nlm.nih.gov/pmc/articles/2905354. https://doi.org/10.1186/1471-2377-10-46
  4. Lykhachev SA, Kulykova SL, Astapenko AV. Epydemyologyya myastenyy v Respublyke Belarus. Zhurnal nevrologyy y psykhyatryy ym SS Korsakova. 2014; 114(1): 54-7. [Russian]
  5. Ramanujam R, Pirskanen R, Ramanujam S, Hammarström L. Utilizing Twins Concordance Rates to Infer the Predisposition to Myasthenia Gravis. Twin Res Hum Genet. 2011 Apr 1; 14(2): 129-36. https://www.ncbi.nlm.nih.gov/pubmed/21425894. https://doi.org/10.1375/twin.14.2.129
  6. Berrih-Aknin S, Le Panse R. Myasthenia gravis: A comprehensive review of immune dysregulation and etiological mechanisms. Journal of Autoimmunity. 2014 Aug; 52: 90-100. https://www.ncbi.nlm.nih.gov/pubmed/24389034. https://doi.org/10.1016/j.jaut.2013.12.011
  7. Giraud M, Vandiedonck C, Garchon H-J. Genetic Factors in Autoimmune Myasthenia Gravis. Annals of the New York Academy of Sciences. 2008 Jun; 1132(1): 180-92. https://www.ncbi.nlm.nih.gov/pubmed/18567868. https://doi.org/10.1196/annals.1405.027
  8. Bubnova LN, Pavlova YE, Baranov VV, Zhulev NM. Znachenye ymmunogenetycheskoy predraspolozhennosty dlya kharaktera techenyya myastenyy gravys. Medytsynskaya ymmunologyya. 2009; 11(6): 549-56. [Russian] https://doi.org/10.15789/1563-0625-2009-6-549-556
  9. Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. The Lancet Neurology. 2009 May; 8(5): 475-90. https://doi.org/10.1016/S1474-4422(09)70063-8
  10. Avidan N, Le Panse R, Berrih-Aknin S, Miller A. Genetic basis of myasthenia gravis - A comprehensive review. Journal of Autoimmunity. 2014 Aug; 52: 146-53. https://www.ncbi.nlm.nih.gov/pubmed/24361103. https://doi.org/10.1016/j.jaut.2013.12.001
  11. Gregersen PK, Kosoy R, Lee AT, Lamb J, Sussman J, McKee D, et al. Risk for myasthenia gravis maps to a 151 Pro→Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol. 2012 Dec; 72(6): 927-35. https://www.ncbi.nlm.nih.gov/pubmed/23055271. https://www.ncbi.nlm.nih.gov/pmc/articles/3535539. https://doi.org/10.1002/ana.23691
  12. Hystad ME, Myklebust JH, Bo TH, Sivertsen EA, Rian E, Forfang L, et al. Characterization of early stages of human B cell development by gene expression profiling. J Immunol. 2007; 179: 3662e71. https://www.ncbi.nlm.nih.gov/pubmed/17785802. https://doi.org/10.4049/jimmunol.179.6.3662
  13. Shkolnyk VM, Kalbus AY, Baranenko AN, Pogorelov AV. Myastenyya: sovremennye podkhody k dyagnostyke y lechenyyu. Ukrayinskyy nevrologichnyy zhurnal. 2014; 2: 12-7. [Russian]
  14. Nevrologyya: natsyonalnoe rukovodstvo. Ed by EY Guseva, AN Konovalova, VY Skvortsovoy, AB Gekht. M: GEOTAR-Media; 2010. 1040 s. [Russian]
  15. Lang B, Willcox N. Autoantibodies in neuromuscular autoimmune disorders. Expert Review of Clinical Immunology. 2006 Mar; 2(2): 293-307. https://www.ncbi.nlm.nih.gov/pubmed/20477079. https://doi.org/10.1586/1744666X.2.2.293
  16. Le Panse R, Berrih-Aknin S. Autoimmune myasthenia gravis: autoantibody mechanisms and new developments on immune regulation. Current Opinion in Neurology. 2013 Oct; 26(5): 569-76. https://www.ncbi.nlm.nih.gov/pubmed/23995274. https://doi.org/10.1097/WCO.0b013e328364d6cd
  17. Tüzün E, Christadoss P. Complement associated pathogenic mechanisms in myasthenia gravis. Autoimmunity Reviews. 2013 Jul; 12(9): 904-11. https://www.ncbi.nlm.nih.gov/pubmed/23537510. https://doi.org/10.1016/j.autrev.2013.03.003
  18. Verschuuren JJGM, Huijbers MG, Plomp JJ, Niks EH, Molenaar PC, Martinez-Martinez P, et al. Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. Autoimmunity Reviews. 2013 Jul; 12(9): 918-23. https://www.ncbi.nlm.nih.gov/pubmed/23535160. https://doi.org/10.1016/j.autrev.2013.03.001
  19. Karachunski PI, Ostlie NS, Monfardini C, Conti-Fine BM. Absence of IFN-gamma or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice. J Immunol. 2000; 164: 5236-44. https://www.ncbi.nlm.nih.gov/pubmed/10799884. https://doi.org/10.4049/jimmunol.164.10.5236
  20. Romanova TV. Issledovanye antytel k atsetylkholynovym retseptoram u bolnykh myastenyey. Byulleten VSNTs SO RAMN. 2013; 2(90): 82-6. [Russian]
  21. Romi F. Thymoma in Myasthenia Gravis: From Diagnosis to Treatment. Autoimmune Diseases. 2011; 2011: 1-5. https://www.ncbi.nlm.nih.gov/pubmed/21860784. https://www.ncbi.nlm.nih.gov/pmc/articles/3155972. https://doi.org/10.4061/2011/474512
  22. DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell. 1996; 85: 501-12. https://doi.org/10.1016/S0092-8674(00)81251-9
  23. Bartoccioni E, Scuderi F, Minicuci GM, Marino M, Ciaraffa F, Evoli A. Anti-MuSK antibodies: correlation with myasthenia gravis severity. Neurology. 2006; 67: 505-7. https://www.ncbi.nlm.nih.gov/pubmed/16894117. https://doi.org/10.1212/01.wnl.0000228225.23349.5d
  24. Dedaev SY. Antytela k autoantygennym myshenyam pry myastenyy y ykh znachenye v klynycheskoy praktyke. Nervno-myshechnye bolezny. 2014; 2: 6-15. [Russian]
  25. Evoli A, Bianchi M.R, Riso R, Minicuci G. M, Patocchi A.P, Servirei S, et al. Response to Therapy in MuSK MG. Ann NY Acad Sci. 2008; 1132: 76-83. https://www.ncbi.nlm.nih.gov/pubmed/18567856. https://doi.org/10.1196/annals.1405.012
  26. Guptill JT, Sanders DB, Evoli A. Anti-musk antibody myasthenia gravis: Clinical findings and response to treatment in two large cohorts. Muscle Nerve. 2011 Jul; 44(1): 36-40. https://www.ncbi.nlm.nih.gov/pubmed/21674519. https://doi.org/10.1002/mus.22006
  27. Argov Z. Current approach to seronegative myasthenia. J Neurol. 2011 Jan; 258(1): 14-8. https://www.ncbi.nlm.nih.gov/pubmed/20852878. https://doi.org/10.1007/s00415-010-5746-6
  28. Musabekova TO, Usenova NSh. K voprosu o dyagnostyke seronegatyvnoy formy myastenyy. Vestnyk KRSU. 2015; 15(11): 113-5. [Russian]
  29. Leite MI, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, et al. IgG1 antibodies to acetylcholine receptors in 'seronegative' myasthenia gravis†. Brain. 2008 Jul; 131(7): 1940-52. https://www.ncbi.nlm.nih.gov/pubmed/18515870. https://www.ncbi.nlm.nih.gov/pmc/articles/2442426. https://doi.org/10.1093/brain/awn092
  30. Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2011 Feb; 69(2): 418-22. https://www.ncbi.nlm.nih.gov/pubmed/21387385. https://doi.org/10.1002/ana.22312
  31. Pevzner A, Schoser B, Peters K, Cosma N-C, Karakatsani A, Schalke B, et al. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol. 2012 Mar; 259(3): 427-35. https://www.ncbi.nlm.nih.gov/pubmed/21814823. https://doi.org/10.1007/s00415-011-6194-7
  32. Mendelson DS. Imaging of the thymus. Chest Surg Clin N Am. 2001; 11: 269-93.
  33. Nishino M, Ashiku SK, Kocher ON, Thurer RL, Boiselle PM, Hatabu H. The thymus: a comprehensive review. Radiographics. 2006; 26: 335-48. https://www.ncbi.nlm.nih.gov/pubmed/16549602. https://doi.org/10.1148/rg.262045213
  34. Hohlfeld R, Wekerle H. Reflections on the "intrathymic pathogenesis" of myasthenia gravis. Journal of Neuroimmunology. 2008 Sep; 201-202: 21-7. https://www.ncbi.nlm.nih.gov/pubmed/18644632. https://doi.org/10.1016/j.jneuroim.2008.05.020
  35. Nikolic A, Djukic P, Basta I, Hajdukovic Lj, Stojanovic VR, Stevic Z, et al. The predictive value of the presence of different antibodies and thymus pathology to the clinical outcome in patients with generalized myasthenia gravis. Clinical Neurology and Neurosurgery. 2013 Apr; 115(4): 432-7. https://www.ncbi.nlm.nih.gov/pubmed/22770539. https://doi.org/10.1016/j.clineuro.2012.06.013
  36. Berrih-Aknin S. Role of the thymus in autoimmune myasthenia gravis. Clin Exp Neuroimmunol. 2016 Aug; 7(3): 226-37. https://doi.org/10.1111/cen3.12319
  37. Le Panse R, Cizeron-Clairac G, Cuvelier M, Truffault F, Bismuth J, Nancy P et al. Regulatory and pathogenic mechanisms in human autoimmune myasthenia gravis. Ann N Y Acad Sci. 2008; 1132: 135-42. https://www.ncbi.nlm.nih.gov/pubmed/18567863. https://doi.org/10.1196/annals.1405.019
  38. Méraouna A, Cizeron-Clairac G, Le Panse R, Bismuth J, Truffault F, Talaksen C et al. The chemokine CXCL13 is a key molecule in autoimmune Myasthenia Gravis. Blood. 2006; 108: 432-40. https://www.ncbi.nlm.nih.gov/pubmed/16543475. https://www.ncbi.nlm.nih.gov/pmc/articles/1847364. https://doi.org/10.1182/blood-2005-06-2383
  39. Sims GP, Shiono H, Willcox N, Stott DI. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J Immunol. 2001; 167: 1935-44. https://www.ncbi.nlm.nih.gov/pubmed/11489973. https://doi.org/10.4049/jimmunol.167.4.1935
  40. Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih Aknin S. Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative Myasthenia Gravis patients and the role of CCL21 in thymic hyperplasia. J Immunol. 2006; 177: 7868-79. https://www.ncbi.nlm.nih.gov/pubmed/17114458. https://www.ncbi.nlm.nih.gov/pmc/articles/1892191. https://doi.org/10.4049/jimmunol.177.11.7868
  41. Thangarajh M, Masterman T, Helgeland L, Rot U, Jonsson MV, Eide GE, et al. The thymus is a source of B-cell-survival factors-APRIL and BAFF-in myasthenia gravis. J Neuroimmunol. 2006; 178: 161-6. https://www.ncbi.nlm.nih.gov/pubmed/16820216. https://doi.org/10.1016/j.jneuroim.2006.05.023
  42. Lauriola L, Ranelletti F, Maggiano N, Guerriero M, Punzi C, Marsili F, et al. Thymus changes in anti-MuSK-positive and -negative myasthenia gravis. Neurology. 2005; 64: 536-8. https://www.ncbi.nlm.nih.gov/pubmed/15699390. https://doi.org/10.1212/01.WNL.0000150587.71497.B6
  43. Weiss J-M, Cufi P, Le Panse R, Berrih-Aknin S. The thymus in autoimmune Myasthenia Gravis: Paradigm for a tertiary lymphoid organ. Revue Neurologique. 2013 Aug; 169(8-9): 640-9. https://www.ncbi.nlm.nih.gov/pubmed/24008049. https://doi.org/10.1016/j.neurol.2013.02.005
  44. Weiss JM, Cufi P, Bismuth J, Eymard B, Fadel E, Berrih-Aknin S, et al. SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology. 2013 Mar; 218(3): 373-81. https://www.ncbi.nlm.nih.gov/pubmed/22704519. https://doi.org/10.1016/j.imbio.2012.05.006
  45. Le Panse R, Bismuth J, Cizeron-Clairac G, Weiss JM, Cufi P, Dartevelle P, et al. Thymic remodeling associated with hyperplasia in myasthenia gravis. Autoimmunity. 2010 Aug; 43(5-6): 401-12. https://www.ncbi.nlm.nih.gov/pubmed/20402580. https://doi.org/10.3109/08916930903563491
  46. Berrih-Aknin S, Ruhlmann N, Bismuth J, Cizeron-Clairac G, Zelman E, Shachar I et al. CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia. Ann Neurol. 2009; 66: 521-31. https://www.ncbi.nlm.nih.gov/pubmed/19847900. https://doi.org/10.1002/ana.21628
  47. Andrian von UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat Rev Immunol. 2003; 3: 867-78. https://www.ncbi.nlm.nih.gov/pubmed/14668803. https://doi.org/10.1038/nri1222
  48. Miyasaka M, Tanaka T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol. 2004; 4: 360-70. https://www.ncbi.nlm.nih.gov/pubmed/15122201. https://doi.org/10.1038/nri1354
  49. Browning JL, Allaire N, Ngam-Ek A, Notidis E, Hunt J, Perrin S, et al. Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity. 2005; 23: 539-50. https://www.ncbi.nlm.nih.gov/pubmed/16286021. https://doi.org/10.1016/j.immuni.2005.10.002
  50. Hohlfeld R, Kalies I, Heinz F, Kalden JR, Wekerle H. Autoimmune rat T lymphocytes monospecific for acetylcholine receptors: purification and fine specificity. J Immunol. 1981; 126: 1355-9.
  51. Sommer N, Willcox N, Harcourt GC, Newsom-Davis J. Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor-reactive T cells. Ann Neurol. 1990; 28: 312-9. https://www.ncbi.nlm.nih.gov/pubmed/2241114. https://doi.org/10.1002/ana.410280303
  52. Melms A, Schalke BC, Kirchner T, Muller-Hermelink HK, Albert E, Wekerle H. Thymus in myasthenia gravis. Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J Clin Invest. 1988; 81: 902-8. https://www.ncbi.nlm.nih.gov/pubmed/2449461. https://www.ncbi.nlm.nih.gov/pmc/articles/442543. https://doi.org/10.1172/JCI113401
  53. Truffault F, Cohen-Kaminsky S, Khalil I, Levasseur P, Berrih-Aknin S. Altered intrathymic T-cell repertoire in human myasthenia gravis. Ann Neurol. 1997; 41: 731-41. https://www.ncbi.nlm.nih.gov/pubmed/9189034. https://doi.org/10.1002/ana.410410609
  54. Aissaoui A, Klingel-Schmitt I, Couderc J, Chateau D, Romagne F, Jambou F et al. Prevention of autoimmune attack by targeting specific T-cell receptors in a severe combined immunodeficiency mouse model of myasthenia gravis. Ann Neurol. 1999; 46: 559-67. https://doi.org/10.1002/1531-8249(199910)46:4<559::AID-ANA3>3.0.CO;2-S
  55. Moulian N, Bidault J, Planche C, Berrih-Aknin S. Two signaling pathways can increase fas expression in human thymocytes. Blood. 1998; 92: 1297-307. https://www.ncbi.nlm.nih.gov/pubmed/9694718. https://doi.org/10.1182/blood.V92.4.1297
  56. Xia Q, Liu WB, Chen ZG, Zhang Y, He XT, Huang RX. [Expression of regulatory T cells in thymus of myasthenia gravis patients]. Zhonghua Yi Xue Za Zhi. 2009; 89: 3031-4.
  57. Balandina A, Lecart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2005; 105: 735-41. https://www.ncbi.nlm.nih.gov/pubmed/15454488. https://www.ncbi.nlm.nih.gov/pmc/articles/1847365. https://doi.org/10.1182/blood-2003-11-3900
  58. Myronenko TV, Kuzmyna LN. Sostoyanye ymmunnoy systemy u bolnykh myastenyey. Ukrayinskyy visnyk psykhonevrologiyi. 2009; 17(2): 113-6. [Russian]
  59. Xia Q, Liu WB, Feng HY, Chen ZG, Zhang Y, He XT. Correlation between pathogenesis of myasthenia gravis and thymus mature dendritic cells. Zhonghua Yi Xue Za Zhi. 2008; 88: 3349-51.
  60. Nagane Y, Utsugisawa K, Obara D, Yamagata M, Tohgi H. Dendritic cells in hyperplastic thymuses from patients with myasthenia gravis. Muscle Nerve. 2003; 27: 582-9. https://www.ncbi.nlm.nih.gov/pubmed/12707978. https://doi.org/10.1002/mus.10362
  61. Thangarajh M, Masterman T, Helgeland L, Rot U, Jonsson MV, Eide GE, et al. The thymus is a source of B-cell-survival factors-APRIL and BAFF-in myasthenia gravis. J Neuroimmunol. 2006; 178: 161-6. https://www.ncbi.nlm.nih.gov/pubmed/16820216. https://doi.org/10.1016/j.jneuroim.2006.05.023
  62. Cohen-Kaminsky S, Devergne O, Delattre RM, Klingel-Schmitt I, Emilie D, Galanaud P, et al. Interleukin-6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia. Eur Cytokine Netw. 1993; 4: 121-32. https://www.ncbi.nlm.nih.gov/pubmed/8357213. https://doi.org/10.1111/j.1749-6632.1993.tb22873.x
  63. Aime C, Cohen-Kaminsky S, Berrih-Aknin S. In vitro interleukin-1 (IL-1) production in thymic hyperplasia and thymoma from patients with myasthenia gravis. J Clin Immunol. 1991; 11: 268-78. https://www.ncbi.nlm.nih.gov/pubmed/1795043. https://doi.org/10.1007/BF00918185
  64. Bernasconi P, Passerini L, Annoni A, Ubiali F, Marcozzi C, Confalonieri P, et al. Expression of transforming growth factor-beta1 in thymus of myasthenia gravis patients: correlation with pathological abnormalities. Ann N Y Acad Sci. 2003; 998: 278-83. https://www.ncbi.nlm.nih.gov/pubmed/14592886. https://doi.org/10.1196/annals.1254.031
  65. Colombara M, Antonini V, Riviera AP, Mainiero F, Strippoli R, Merola M, et al. Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells. J Immunol. 2005; 175: 7021-8. https://www.ncbi.nlm.nih.gov/pubmed/16272363. https://doi.org/10.4049/jimmunol.175.10.7021
  66. Leite MI, Jones M, Strobel P, Marx A, Gold R, Niks E, et al. Myasthenia gravis thymus: complement vulnerability of epithelial and myoid cells, complement attack on them, and correlations with autoantibody status. Am J Pathol. 2007; 171: 893-905. https://www.ncbi.nlm.nih.gov/pubmed/17675582. https://www.ncbi.nlm.nih.gov/pmc/articles/1959483. https://doi.org/10.2353/ajpath.2007.070240
  67. Mesnard-Rouiller L, Bismuth J, Wakkach A, Poea-Guyon S, Berrih-Aknin S. Thymic myoid cells express high levels of muscle genes. J Neuroimmunol. 2004; 148: 97-105. https://www.ncbi.nlm.nih.gov/pubmed/14975590. https://doi.org/10.1016/j.jneuroim.2003.11.013
  68. Roxanis I, Micklem K, McConville J, Newsom-Davis J, Willcox N. Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis. Journal of Neuroimmunology. 2002; 125: 185-97. https://doi.org/10.1016/S0165-5728(02)00038-3
  69. Wakkach A, Poea S, Chastre E, Gespach C, Lecerf F, De La Porte S, et al. Establishment of a human thymic myoid cell line. Phenotypic and functional characteristics. American Journal of Pathology. 1999; 155: 1229-40. https://doi.org/10.1016/S0002-9440(10)65225-X
  70. Emilie D, Crevon MC, Cohen-Kaminsky S, Peuchmaur M, Devergne O, Berrih-Aknin S, et al. In situ production of interleukins in hyperplastic thymus from myasthenia gravis patients. Hum Pathol. 1991; 22: 461-8. https://doi.org/10.1016/0046-8177(91)90132-9
  71. Poëa-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M, Wakkach A, et al. Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J Immunol. 2005; 174: 5941-9. https://www.ncbi.nlm.nih.gov/pubmed/15879086. https://doi.org/10.4049/jimmunol.174.10.5941
  72. Verma A, Berger J. Myasthenia gravis associated with dual infection of HIV and HTLV-I. Muscle Nerve. 1995; 18: 1355-6.
  73. Saha A, Batra P, Vilhekar KY, Chaturvedi P. Post-varicella myasthenia gravis. Singapore Med J. 2007; 48: 177-80.
  74. Cavalcante P, Serafini B, Rosicarelli B, Maggi L, Barberis M, Antozzi C, et al. Epstein-barr virus persistence and reactivation in myasthenia gravis thymus. Ann Neurol. 2010; 67(6): 726-38. https://www.ncbi.nlm.nih.gov/pubmed/20517934. https://doi.org/10.1002/ana.21902
  75. Meyer M, Höls A-K, Liersch B, Leistner R, Gellert K, Schalke B, et al. Lack of evidence for epstein-barr virus infection in myasthenia gravis thymus. Ann Neurol. 2011 Sep; 70(3): 515-8. https://www.ncbi.nlm.nih.gov/pubmed/21905083. https://doi.org/10.1002/ana.22522
  76. Kakalacheva K, Maurer MA, Tackenberg B, Münz C, Willcox N, Lünemann JD. Intrathymic epstein-barr virus infection is not a prominent feature of myasthenia gravis. Ann Neurol. 2011 Sep; 70(3): 508-14. https://www.ncbi.nlm.nih.gov/pubmed/21905082. https://doi.org/10.1002/ana.22488
  77. Kott E, Hahn T, Huberman M, Levin S, Schattner A. Interferon system and natural killer cell activity in myasthenia gravis. Q J Med. 1990; 76: 951-60.
  78. Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, et al. Increased Toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. Am J Pathol. 2005; 167: 129-39. https://doi.org/10.1016/S0002-9440(10)62960-4
  79. Dong VM, McDermott DH, Abdi R. Chemokines and diseases. Eur J Dermatol. 2003; 13: 224-30.
  80. Kunkel SL, Godessart N. Chemokines in autoimmunity: from pathology to therapeutics. Autoimmun Rev. 2002; 1: 313-20. https://doi.org/10.1016/S1568-9972(02)00085-X
  81. Vielhauer V, Anders HJ, Schlondorff D. Chemokines and chemokine receptors as therapeutic targets in lupus nephritis. Semin Nephrol. 2007; 27: 81-97. https://www.ncbi.nlm.nih.gov/pubmed/17336691. https://doi.org/10.1016/j.semnephrol.2006.09.010
  82. Atkinson MA, Wilson SB. Fatal attraction: chemokines and type 1 diabetes. J Clin Invest. 2002; 110: 1611-3. https://doi.org/10.1172/JCI0217311
  83. Chen X, Oppenheim JJ, Howard OM. Chemokines and chemokine receptors as novel therapeutic targets in rheumatoid arthritis (RA): inhibitory effects of traditional Chinese medicinal components. Cell Mol Immunol. 2004; 1: 336-42.
  84. Karpus WJ, Ransohoff RM. Chemokine regulation of experimental autoimmune encephalomyelitis: temporal and spatial expression patterns govern disease pathogenesis. J Immunol. 1998; 161: 2667-71.
  85. Barone F, Bombardieri M, Manzo A, Blades MC, Morgan PR, Challacombe SJ et al. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjogren's syndrome. Arthritis Rheum. 2005; 52: 1773-84. https://www.ncbi.nlm.nih.gov/pubmed/15934082. https://doi.org/10.1002/art.21062
  86. Kuan WP, Tam L-S, Wong C-K, Ko FWS, Li T, Zhu T, et al. CXCL 9 and CXCL 10 as Sensitive Markers of Disease Activity in Patients with Rheumatoid Arthritis. J Rheumatol. 2010 Feb; 37(2): 257-64. https://www.ncbi.nlm.nih.gov/pubmed/20032101. https://doi.org/10.3899/jrheum.090769
  87. Bauer JW, Petri M, Batliwalla FM, Koeuth T, Wilson J, Slattery C, et al. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum. 2009; 60: 3098-107. https://www.ncbi.nlm.nih.gov/pubmed/19790071. https://www.ncbi.nlm.nih.gov/pmc/articles/2842939. https://doi.org/10.1002/art.24803
  88. Shiao Y-M, Lee C-C, Hsu Y-H, Huang S-F, Lin C-Y, Li L-H, et al. Ectopic and high CXCL13 chemokine expression in myasthenia gravis with thymic lymphoid hyperplasia. Journal of Neuroimmunology. 2010 Apr; 221(1-2): 101-6. https://www.ncbi.nlm.nih.gov/pubmed/20223524. https://doi.org/10.1016/j.jneuroim.2010.02.013
  89. Saito R, Onodera H, Tago H, Suzuki Y, Shimizu M, Matsumura Y, et al. Altered expression of chemokine receptor CXCR5 on T cells of myasthenia gravis patients. J Neuroimmunol. 2005; 170: 172-8. https://www.ncbi.nlm.nih.gov/pubmed/16214223. https://doi.org/10.1016/j.jneuroim.2005.09.001
  90. Lee EY, Lee Z-H, Song YW. CXCL10 and autoimmune diseases. Autoimmunity Reviews. 2009 Mar; 8(5): 379-83. https://www.ncbi.nlm.nih.gov/pubmed/19105984. https://doi.org/10.1016/j.autrev.2008.12.002
  91. Feferman T, Maiti PK, Berrih-Aknin S, Bismuth J, Bidault J, Fuchs S, et al. Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis. J Immunol. 2005; 174: 5324-31. https://www.ncbi.nlm.nih.gov/pubmed/15843529. https://doi.org/10.4049/jimmunol.174.9.5324
  92. Suzuki Y, Onodera H, Tago H, Saito R, Ohuchi M, Shimizu M, et al. Altered populations of natural killer cell and natural killer T cell subclasses in myasthenia gravis. J Neuroimmunol. 2005; 167: 186-9. https://www.ncbi.nlm.nih.gov/pubmed/16040133. https://doi.org/10.1016/j.jneuroim.2005.06.015
  93. Feferman T, Aricha R, Mizrachi K, Geron E, Alon R, Souroujon MC, et al. Suppression of experimental autoimmune myasthenia gravis by inhibiting the signaling between IFN-gamma inducible protein 10 (IP-10) and its receptor CXCR3. J Neuroimmunol. 2009; 209: 87-95. https://www.ncbi.nlm.nih.gov/pubmed/19232748. https://doi.org/10.1016/j.jneuroim.2009.01.021
  94. Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM. Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med. 2001; 193: 713-26. https://www.ncbi.nlm.nih.gov/pubmed/11257138. https://www.ncbi.nlm.nih.gov/pmc/articles/2193420. https://doi.org/10.1084/jem.193.6.713
  95. Bai Y, Liu R, Huang D, La Cava A, Tang Y, Iwakura Y, et al. CCL2 recruitment of IL‐6‐producing CD11b + monocytes to the draining lymph nodes during the initiation of Th17‐dependent B cell‐mediated autoimmunity. Eur J Immunol. 2008 Jul; 38(7): 1877-88. https://www.ncbi.nlm.nih.gov/pubmed/18581322. https://doi.org/10.1002/eji.200737973
  96. Reyes-Reyna SM, Krolick KA. Chemokine production by rat myocytes exposed to interferongamma. Clin Immunol. 2000; 94: 105-13. https://www.ncbi.nlm.nih.gov/pubmed/10637095. https://doi.org/10.1006/clim.1999.4828
  97. Spillane J, Hayward M, Hirsch NP, Taylor C, Kullmann DM, Howard RS. Thymectomy: role in the treatment of myasthenia gravis. J Neurol. 2013 Jul; 260(7): 1798-801. https://www.ncbi.nlm.nih.gov/pubmed/23508539. https://doi.org/10.1007/s00415-013-6880-8
  98. Budde JM, Morris CD, Gal AA, Mansour KA, Miller Jr JI. Predictors of outcome in thymectomy for myasthenia gravis. Ann Thorac Surg. 2001; 72: 197-202. https://doi.org/10.1016/S0003-4975(01)02678-9
  99. Nieto IP, Robledo JP, Pajuelo MC, Montes JA, Giron JG, Alonso JG, et al. Prognostic factors for myasthenia gravis treated by thymectomy: review of 61 cases. Ann Thorac Surg. 1999; 67: 1568-71. https://doi.org/10.1016/S0003-4975(99)00310-0
  100. Okumura M, Ohta M, Takeuchi Y, Shiono H, Inoue M, Fukuhara K, et al. The immunologic role of thymectomy in the treatment of myasthenia gravis: implication of thymus-associated B-lymphocyte subset in reduction of the anti-acetylcholine receptor antibody titer. J Thorac Cardiovasc Surg. 2003; 126: 1922-8. https://doi.org/10.1016/S0022-5223(03)00938-3
  101. Klymova EM, Drozdova LA, Nechytaylo PE, Lavynskaya EV, Kalashnykova YuV. Dyagnostycheskye kryteryy oslozhnennogo techenyya myastenyy u bolnykh posle tymektomyy. Laboratorna diagnostyka. 2013; 3(65): 14-9. [Russian]
  102. Klymova UM, Boyko VV, Drozdova LA, Krasnoyaruzhskyy AG, Lavynskaya EV, Kalashnykova YuV, et al. Dyagnostycheskye y prognostycheskye markery myastenycheskykh y kholynergycheskykh kryzov y ykh profylaktyka pry razlychnykh fenotypakh myastenyy. Kharkivska khirurgichna shkola. 2015; 3(72): 6-12. [Russian]
  103. Newsom-Davis J, Cutter G, Wolfe GI, Kaminski HJ, Jaretzki III A, Minisman G, et al. Status of the Thymectomy Trial for Nonthymomatous Myasthenia Gravis Patients Receiving Prednisone. Annals of the New York Academy of Sciences. 2008 Jun; 1132(1): 344-7. https://www.ncbi.nlm.nih.gov/pubmed/18567886. https://doi.org/10.1196/annals.1405.014