ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 1 of 50
Up
JMBS 2018, 3(7): 9–13
https://doi.org/10.26693/jmbs03.07.009
Experimental Medicine and Morphology

Immunohistochemical Study of Proapoptotic Bax-Protein in Deciduocytes of the Basal Placental Plate in Case of Basal Deciduitis Concomitant with Iron Deficiency Anemia in Pregnant Women

Ilika V. V., Davydenko I. S.
Abstract

Free radicals play an active role in the inflammatory diseases of the placenta, interfering at a variety of levels of initiation, course and regulation. During the inflammation, direct activation of inflammatory cells, especially granulocytes, reveals a large amount of oxygen radicals and proteases that contribute to the destruction of bacteria and also exacerbate oxidative stress, which in turn serves as a signal for cellular proliferation and apoptosis of certain cellular clones. The purpose of the study was to determine quantitative parameters of optical density of immunohistochemical staining of proapoptotic protein in deciduocytes of the basal placental plate in case of basal deciduitis concomitant with iron deficiency anemia in pregnant women. Material and methods. The study involved 198 placentas. The methodology was performed on 5-μm-thick serial histological sections (after deparaffinization). Primary antibodies to the Bax-protein were used for immunohistochemical identification of proapoptotic molecular factors, visualizing primary antibodies by means of polymeric system (DAKO) with a diaminobenzidine dye. The nucleus staining was finished by Mayer’s hematoxylin. The digital copies of the image were received. The optical density of the histochemical staining was measured by means of the computer microdensitometry method. The arithmetic mean and its error were calculated. Differences in the average tendencies were carried out with the help of a bilateral odd Student’s test. Results and discussion. In the placentas of physiological pregnancy the intensity of the immunohistochemical staining was 0.121±0.0012 relative units of optical density, and in case of iron deficiency anemia in pregnancy it equaled to 0.132±0.0014, which indicates a significant increase in the apoptosis processes in deciduocytes of the basal plate of the placenta, where p<0.001. The study of cases of acute basal deciduitis revealed the relative units of optical density at the level of 0.125±0.0013, and of comorbid iron deficiency anemia in pregnancy it was 0.128±0.0016, p>0.05. Regarding the chronic basal deciduitis, the quantitative parameters of immunohistochemical staining for the proapoptotic Bax-protein equaled to 0.241±0.0014, which is statistically higher than the indices in placental physiological pregnancy (p<0.001), and in comorbid iron deficiency anemia in pregnancy it was 0.254±0.0016, where p<0.001 in comparison with inflammation without anemia. Conclusions. Iron deficiency anemia in pregnant women leads to an increase in the optical density of immunohistochemical staining for the proapoptotic Bax-protein in deciduocytes of the basal plate of the placenta. The processes of apoptosis intensify only in chronic basal deciduitis, and even more in case of comorbid iron deficiency anemia in pregnant women.

Keywords: proapoptotic Bax-protein, inflammation of the placenta, iron-deficiency anemia in gravidas, deciduocyt

Full text: PDF (Ukr) 271K

References
  1. Ancheva IA. Disfunktsіya platsenti pri anemіі vagіtnikh: dіagnostika, vedennya vagítnostіі profílaktika: Dis. Dr. Sci. (Med.). Odesa: Odesʹkyy nats. med. un-t; 2015. 271 s. [Ukrainian]
  2. Syrovaya AO, Leont'yeva FS, Novikova IV, Novikova SV. Biologicheskaya rol' svobodnykh radikalov v razvitii patologicheskikh sostoyaniy. Mezhdunarodnyy meditsinskiy zhurnal. 2012; 18(3): 98-104. [Russian]
  3. Ilika VV. Khemilyuminestsentne doslidzhennya nitroperoksidiv u strukturakh platsenty pry khorionamnioniti ta bazalʹnomu detsiduyiti z zalizodefitsitnoyu anemiyeyu vahitnyh. Ukrayinsʹkyy zhurnal medytsyny, biolohiyi ta sportu. 2018; 5: 36-40. [Ukrainian] https://doi.org/10.26693/jmbs03.05.036
  4. Kostyuk VM. Morfolohichni aspekty vyvchennya apoptozu v ekstravilʹoznomu tsitotrofoblasti pry zalizodefitsitniy anemiyi vahitnykh. AML. 2008; 14(4): 53-7. [Ukrainian]
  5. Menshchikova YB, Zenkov NK, Lankin VZ, Bondar' IA, Trufakin VA. Okislitel'nyy stress. Patologicheskiye sostoyaniya i zabolevaniya. Elektron. tekstovyye dannyye. Novosibirsk: Sibirskoye universitetskoye izdatel'stvo. [Internet]. 2017. [tsitirovano 2018 veres 15]; 284 s. Available from: http://www.iprbookshop.ru/65151.html [Russian]
  6. Pavlishin GA, Sarapuk ІM, Yukhimchuk AT. Suchasnі poglyadi na rol' neytrofilov i ikh apoptoz v patogenezakh zapal'nikh protsessov. Mezhdunarodnyy zhurnal pediatrii, akusherstva i ginekologii. 2014; 5(1): 69-81 [Ukrainian]
  7. Yakovleva YA, Demina OV, Babadzhanyan YN, Yakovenko YA. Platsentarnaya disfunktsiya. Mіzhnarodniy medichniy zhurnal. 2017; 23(2)2: 47-51. [Russian]
  8. Hammer Ø. PAST: Paleontological Statistics, Version 3.14. Reference manual. Oslo: Natural History Museum University of Oslo; 2016. 243 p.
  9. Krause BJ, Hanson MA, Casanello P. Role of nitric oxide in placental vascular development and function. Placenta. 2011; 32: 797–805. https://www.ncbi.nlm.nih.gov/pubmed/21798594. https://www.ncbi.nlm.nih.gov/pmc/articles/3218217. https://doi.org/10.1016/j.placenta.2011.06.025
  10. McCallum KC, Garsin DA. The Role of Reactive Oxygen Species in Modulating the Caenorhabditis elegans Immune Response. PLoS pathogens. 2016; 12(11): e1005923. https://doi.org/10.1371/journal.ppat.1005923
  11. Aouache R, Biquard L, Vaiman D, Miralles F. Oxidative stress in preeclampsia and placental diseases. International journal of molecular sciences. 2018; 19(5): 1496. https://www.ncbi.nlm.nih.gov/pubmed/29772777. https://www.ncbi.nlm.nih.gov/pmc/articles/5983711. https://doi.org/10.3390/ijms19051496
  12. Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013; 87(7): 1157–80. https://www.ncbi.nlm.nih.gov/pubmed/23543009. https://doi.org/10.1007/s00204-013-1034-4
  13. Perrone S, Tataranno ML, Negro S, Longini M, Toti MS, Alagna MG.. Placental histological examination and the relationship with oxidative stress in preterm infants. Placenta. 2016; 46: 72-8. https://doi.org/10.1016/j.placenta.2016.08.084
  14. Rasband W, Ferreire T. ImageJ user guide 1.48 v. USA: National Institute of Health; 2015. 140 p.
  15. Tan S-N, Sim S-P, Khoo AS. Potential role of oxidative stress-induced apoptosis in mediating chromosomal rearrangements in nasopharyngeal carcinoma. Cell & Bioscience. 2016; 6(1): 35. https://www.ncbi.nlm.nih.gov/pubmed/27231526. https://www.ncbi.nlm.nih.gov/pmc/articles/4880972. http://doi.org/10.1186/s13578-016-0103-9
  16. Pinegin B, Vorobjeva N, Pashenkov M, Chernyak B. The role of mitochondrial ROS in antibacterial immunity. Journal of cellular physiology. 2018; 233(5): 3745-54. https://www.ncbi.nlm.nih.gov/pubmed/28771715. https://doi.org/10.1002/jcp.26117