THE MAXILLARY ARTERY DEFINITION ACCORDING TO CBCT DATA IN PATIENTS WITH CHRONIC MAXILLARY SINUSITIS

Belarusian State Medical University, Minsk, Republic of Belarus

DOI: 10.26693/jmbs05.06.252
UDC 616.216.1-002.3-073.756.8
Pohodenko-Chudakova I. O., Maksimovich E. V., Hosseinpour A. M.

The number of maxillary sinusitis is significant in the structure of inflammatory diseases in an outpatient maxilla-facial surgery and they are one of the chief reasons for the patients’ hospitalization. The anatomy of maxillary sinus with 3D Computer tomography scan should be included in appropriate presurgical treatment planning.

The purpose of the study was to determine the visualization and diameter of the maxillary artery in according analyzing of Cone bean computer tomography data of patients, to identify the relationship between the presence of chronic maxillary sinusitis and the visualization of the maxillary artery and its diameter.

Material and methods. The data of 44 Cone bean computer tomography results was analyzed for 24 patients with chronic maxillary sinusitis of odontogenic origin (it was observation group 1, included 48 sinuses), 20 patients were without pathological changes in the maxillary sinus (it was comparison group 2, included 40 sinuses). All the Cone bean computer tomographies randomly selected by patients who visited dental outpatient clinics of Minsk city, the Republic of Belarus during the period from 2018 to 2020 and were analyzed by GALILEIOS program.

Results and discussion. The analysis revealed that maxillary artery was not detected in 25.0% (12) patients of group 1, while in group 2 it was not detected in 5.0% (2) patients. When determining the diameter of the maxillary artery, we found that in group 1 patients, the artery diameter 0.1-0.99 mm was determined in 91.7% (33) cases, and in 92.2% (35) of group 2 patients; the diameter of the maxillary artery determined in 91.7% (33) cases, and in 92.2% (35) of group 1 patients, the artery diameter 0.1-0.99 mm was visualized 5 times more often than in patients of group 2 (comparison group), which may indicate to deeper ischemic changes in the maxillary tissues of patients with chronic maxillary sinusitis. There was no significant difference in the diameter of the maxillary arteries in groups 1 and 2. The study will be continued.

Conclusion. The study results showed that in patients of group 1 with the presence of chronic maxillary sinusitis, the maxillary artery was not visualized 5 times more often than in patients of group 2 (comparison group), which may indicate to deeper ischemic changes in the maxillary tissues of patients with chronic maxillary sinusitis. There was no significant difference in the diameter of the maxillary arteries in groups 1 and 2. The study will be continued.

Keywords: Cone bean computer tomography, maxillary artery, chronic maxillary sinusitis.

Introduction. The maxillary sinuses are the largest from the paranasal. As it’s known from the anatomy the vascular system of the maxillary sinus varies in architecture and vascular anastomosis of the vessels [1]. The three branches of the maxillary artery – the posterior superior alveolar, infraorbital, posterior lateral nasal arteries supply the maxillary sinus. The maxillary artery emanates from the external carotid artery. It should be taken into account that the network that is formed from the ramifications of these arteries located in and below the mucous membrane lining of the nasal cavity and sinuses and intrasosseously (Dennis Flanagan, 2006). And these arteries should be taken into account during planning any type of the maxillary surgery. This can cause complications with severe bleeding in surgical procedures that will need ligation of artery [1, 2].

Inflammation of the maxillary sinus – sinusitis is one of the most frequently diagnosed inflammatory diseases of the maxillofacial region. It should be noticed that since 5-15% of the adult, working-age population (18-55 years old) suffer from this disease, which makes this issue significant both socially and economically [3].

If an inflammatory condition of the maxillary sinuses is the result of dental pathology it is called odontogenic. The share of odontogenic lesions of the maxillary sinus (MS), according to dentists and maxillofacial surgeons, can reach 40%, and according to otorhinolaryngologists - 13% of all diagnosed inflammatory lesions of the specified sinus. The frequency of maxillary sinusitis of odontogenic etiology varies from 2-6% to 24-50% of all diseases of the paranasal sinuses. At the same time, a significant part of all MS diseases is chronic sinusitis, which affects from 5% till 20% of the world’s population. A large number of publications deal with the issues of research and search for new methods of treatment and diagnosis of chronic maxillary sinusitis [4, 5, 6].

The basic factor of odontogenic lesion of the MS is the periapical inflammatory process in the area of the roots of the teeth, protruding or adjacent to the maxillary sinus. In a case of a tooth extraction opera-
The data of 44 CBCT results was analyzed where 24 patients had chronic maxillary sinusitis of odontogenic origin (it was observation group 1, included 48 sinuses), and 20 patients were without pathological changes in the maxillary sinus (it was a comparison group 2, which included 40 sinuses).

The left and right maxillary sinuses are affected approximately equally often. Bilateral maxillary sinus involvement is rare. Odontogenic maxillary sinusitis in 18% of patients can be combined with inflammation of the ethmoid sinuses and in 2.5% of the frontal sinuses, therefore, it is not always isolated. This pathology takes an essential place in the practice of a dentist-surgeon both at an outpatient appointment and in an inpatient clinic. The information about the treatment methods of this pathology that is available in various scientific sources is not always clearly stated, sometimes it is contradictory. The predisposing factors for developing of odontogenic maxillary sinusitis are the anatomical and topographic proximity of the periapical tissues of the maxillary teeth (premolars and molars) to the maxillary sinus. Closest to the sinus is the first molar, less often the second molar and the second premolar, even less often the third molar and the first premolar. The anatomical relationship between the teeth and the MS depends on the size of the MS. In a case of a large MS, the roots of the teeth are closer to its bottom, and sometimes protrude into its space. The thickness of the bone plate separating the apexes of the roots from the space of the MS varies from 0.2 to 12 mm. In a case of a wide and low upper jaw, the alveolar cavity of the sinus can extend to the level of the canine and even the second incisor [7, 9, 10].

Odontogenic maxillary sinusitis among surgical dental patients ranges from 4.2% to 8%. According to the statistics, the odontogenic maxillary sinusitis in majority of cases doctors fix chronic forms occurs more than acute. The most common reasons for this are the later visit of the patient to the doctor; negligence of dentists in the early diagnosis of acute maxillary sinusitis in patients with acute and exacerbation of chronic periodontitis of the upper premolars and molars; difficulties in the diagnosis of odontogenic sinusitis. The reasons for this are: the clinical picture of periodontitis of the upper lateral teeth distorts the clinical picture of maxillary sinusitis; unqualified complex treatment of acute odontogenic sinusitis leads to complications and exacerbations of this disease; the lack of a comprehensive algorithm for treatment and prevention, the method of interaction of an interdisciplinary approach of a dentist and an otorhinolaryngologist for early diagnosis, treatment and prevention of odontogenic sinusitis [5, 8].

The purpose of the study was to determine the visualization and diameter of the maxillary artery in according analyzing of CBCT data of patients, to identify the relationship between the presence of chronic maxillary sinusitis and the visualization of the maxillary artery and its diameter.

Material and methods. The data of 44 CBCT results was analyzed where 24 patients had chronic maxillary sinusitis of odontogenic origin (it was observation group 1, included 48 sinuses), and 20 patients were without pathological changes in the maxillary sinus (it a was comparison group 2, which included 40 sinuses). All the CBCTs randomly selected by patients who visited dental outpatient clinics of Minsk city, the
Republic of Belarus during the period from 2018 to 2020 and were analyzed by GALILEOS program.

The study was conducted in accordance with the basic bioethical norms of the Helsinki Declaration of the world medical Association on ethical principles for medical research amendments (2000, 2008), Universal Declaration on bioethics and human rights (1997), Convention of the Council of Europe on human rights and Biomedicine (1997). Written informed consent was obtained from all patients, and a full range of measures was taken to ensure their anonymity.

Results and discussion. The results analysis revealed that maxillary artery was not detected in 25.0% (12) patients of group 1, while in group 2 it was not detected in 5.0% (2) patients (figure 1).

When determining the diameter of the maxillary artery, we found that in group 1 patients, the artery diameter 0.1-0.99 mm was determined in 91.7% (33) cases, and in 92.2% (35) of group 2 patients; the diameter of the maxillary artery 1.0 mm or more in group 1 patients was determined in 8.3% (3) of observations, and in 7.8% (3) of group 2 patients (figure 2).

There were revealed different types of the maxillary arteries localization (figure 3).

An essential diagnostic tool in the diagnosis and management of odontogenic sinusitis is radiographic imaging, include Periapical radiography and panoramic radiography are standard dental radiographs [11]. But it should be noted that they are limited in the evaluation of multi-rooted teeth that are most commonly the cause of odontogenic sinusitis. But it was written by scientists that the overall sensitivity of dental radiographs in the detection of periodontal disease and carious dental lesions are 85.0% and 60.0%, respectively [12, 13]. And high rates of false negatives results were reported with one study demonstrating that compared to cone beam computerized tomography (CBCT) imaging periapical radiography missed more than 60% of periodontal pathology [14, 15].

According the literature data, the 3D-CT are able to identify the maxillary artery. Different types of localization of maxillary artery should be taken into account during maxillofacial surgery as well as in neurosurgery, for example in therapeutic techniques such as extracranial-intracranial (EC-IC) bypass, intracranial endonasal approaches and endovascular procedures [12]. And the diameter of the maxillary
artery can influence on the blood flow in mucosa of maxillary sinus. And in a case of lack of blood supply and nonvisible maxillary artery we can suspect ischemia of soft tissues and chronic inflammation.

Conclusion. The study results showed that in patients of group 1 with the presence of chronic maxillary sinusitis, the maxillary artery was not visualized 5 times more often than in patients of group 2 (comparison group), which may indicate to deeper ischemic changes in the maxillary tissues of patients with chronic maxillary sinusitis. There was no significant difference in the diameter of the maxillary arteries in groups 1 and 2. The study will be continued.

Research perspective. The results of this trial can be applied in maxilla-facial surgery for prognosis and treatment management of odontogenic maxillary sinusitis and may be proceeded for the better understanding of pathogenesis of chronic odontogenic maxillary sinusitis.

References

7. Zhartybaev RN, Smetov GG. Rannaja diagnostika, lechenie i profilaktika odontogennogo verhnechelyustnogo sinusita v stomatologicheskikh ambulatornyh uslovijah (Literaturnyj obzor) [Early diagnosis, treatment and prevention of odontogenic maxillary sinusitis in dental outpatient basis (Literature review)]. *Bull of KazNUU.* 2016; 3: 86-90. [Russian]

УДК 616.216.1-002.3-073.756.8

ВЕРІФІКАЦІЯ ВЕРХНЬОЩЕЛЕПНОЇ АРТЕРІЇ ЗА ДАНИМИ КОНУСНО-ПРОМЕНЕВОЇ КОМП’ЮТЕРНОЇ ТОМОГРАФIЇ У ПАЦIЄНТІВ З ХРОНІЧНИМ ВЕРХНЬОЩЕЛЕПНИМ СИНУСИТОМ
Походенько-Чудакова І. О., Максимович Є. В., Хоссейнпур А. М.

Резюме. Інфекційно-запальні захворювання верхньощелепного синуса займають значну частину у структурі амбулаторного хірургічного стоматологічного прийому, і є однією з причин госпіталізації пацієнтів. Верхньощелепний синусит є одним з найбільш часто діагностованих запальних захворювань щелепно-лицевої ділянки. Слід зазначити, що цим захворюванням страждає 5-15% дорослого населення (18-55 років), що робить дане питання значущим як у соціальному, так і в економічному плані. Конусно-променева комп’ютерна томографія є основним діагностичним методом при обстеженні осіб даної категорії.

Мета дослідження – визначити візуалізацію, діаметр верхньощелепної артерії за даними конусно-променевої комп’ютерної томографії стоматологічних пацієнтів, проаналізувати зв’язок з хронічним одонтогенним верхньощелепним синуситом.

Результати. Проаналізовано результати конусно-променевої комп’ютерної томографії (програма GALILEOS) 24 пацієнтів з хронічним одонтогенним верхньощелепним синуситом (група спостереження 1), та 20 пацієнтів без патологічних змін верхньощелепної пазухи (група порівняння 2) за період 2018-2020 рр. У результаті дослідження виявлено, що верхньощелепна артерія не визначалася в групі 1 у 25,0% (12) пацієнтів, в групі 2 – у 5,0% (2). У пацієнтів групи 1 діаметр артерії 0,1-0,99 mm визначався в 91,7% (33) спостережень, у групи 2 – в 92,2% (35). Діаметр верхньощелепної артерії 1,0 mm і більше у пацієнтів групи 1 визначався в 8,3% (3) спостережень, у групи 2 – в 7,8% (3). Виявлено різні типи локалізації верхньощелепної артерії. У результаті проведеного дослідження було встановлено, що у пацієнтів 1-ї групи відсутність хронічного верхньощелепного синуситу верхньощелепна артерія візуалізувалася в 5 разів частіше, ніж у осіб 2-ї групи (групи порівняння), що може свідчити про більш глибокі ішемічні зміни в тканинах верхньої щелепи при хронічному верхньощелепному синуситі.

Ключові слова: конусно-променева комп’ютерна томографія, верхньощелепна артерія, хронічний верхньощелепний синусит.