ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 6 of 44
Up
JMBS 2022, 7(2): 40–48
https://doi.org/10.26693/jmbs07.02.040
Medicine. Reviews

Monosodium Glutamate: Mechanisms of Action and Role in the Development of Structural Changes of Organs and Systems (Literature Review)

Sodomora O. O.
Abstract

The purpose of the study was to analyze the available published data on the effects of monosodium glutamate on structure and function of different organs and systems of a living organism, as well as the role of monosodium glutamate in the development of certain pathologic conditions. Special attention was dedicated to the data pertaining the reported morphological manifestations of monosodium glutamate unfavorable effects on cardiovascular, digestive and reproductive systems, as well as metabolic processes. Data about suspected genotoxicity of monosodium glutamate was also analyzed with the effects on cancerogenesis in focus. Careful attention was paid to general design of specific studies, doses of monosodium glutamate administered and the rout of administration applied to facilitate estimation of relevance and clinical significance of the data obtained in any given study. Materials and methods. The search was done in the databases of Google Scholar, NCBI, PUBMED and Web of Science using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis PRISMA) Guidelines. The depth of the search was 10 years but several older papers that were significant for understanding the background of the monosodium glutamate research were also included. Results and discussion. Monosodium glutamate is a flavor enhancer that is widely used and is consumed by adults and children on a daily basis. Despite monosodium glutamate is generally considered to be safe for consumption and is permitted for use in many countries, numerous studies have shown its various toxic effects on organs and tissues that resulted in impaired structure and function. That is why scientific research on monosodium glutamate effects on the structure and function of certain organs and systems of a living organism remains relevant, especially given the variety and somewhat ambiguity of the data available. Available evidence of monosodium glutamate induced morphological changes has special clinical significance, as it is the structural disturbances that are the main underlying cause of impaired functions that result in development of pathologic processes and diseases. So determination of relevance and estimation of quality of the data available is crucial for its interpretation and determination of its possible clinical extrapolation. Conclusion. The data shows that monosodium glutamate consumption may be associated with adverse effects, particularly with cardiotoxicity, hepatotoxicity, neurotoxicity, metabolic disorders, obesity, diabetes mellitus, chronic inflammation, behavioral changes and even genotoxicity. However, taking into account different design and methodology of the studies and various doses of monosodium glutamate administered, certain difficulties that arise while extrapolating the studies’ results to wider population and their sometimes limited clinical application point towards the need for further research and generalizations on the effects of short-term and long-term administration of various doses of monosodium glutamate and their effects on molecular, biochemical and structural levels

Keywords: monosodium glutamate, obesity, metabolic syndrome, hepatotoxicity, cardiotoxicity, neurotoxicity, genotoxicity

Full text: PDF (Ukr) 281K

References
  1. Batsis JA, Zagaria AB. Addressing Obesity in Aging Patients. Med Clin North Am. 2018 Jan;102(1):65-85. PMID: 29156188. PMCID: PMC5724972. https://doi.org/10.1016/j.mcna.2017.08.007
  2. Davies NE. Chinese-restaurant syndrome. N Engl J Med. 1968 May;278(20):1124. PMID: 5646236. https://doi.org/10.1056/NEJM196805162782014
  3. Jin L, Lin L, Li GY, Liu S, Luo DJ, Feng Q, et al. Monosodium glutamate exposure during the neonatal period leads to cognitive deficits in adult Sprague-Dawley rats. Neurosci Lett. 2018 Aug;682:39-44. PMID: 29885453. https://doi.org/10.1016/j.neulet.2018.06.008
  4. Obayashi Y, Nagamura Y. Does monosodium glutamate really cause headache?: a systematic review of human studies. J Headache Pain. 2016;17(1):54. PMID: 27189588. PMCID: PMC4870486. https://doi.org/10.1186/s10194-016-0639-4
  5. Nnadozie JO, Chijioke UO, Okafor OC, Olusina DB, Oli AN, Nwonu PC, et al. Chronic toxicity of low dose monosodium glutamate in albino Wistar rats. BMC Res Notes. 2019 Sep;12(1):593. PMID: 31533812. PMCID: PMC6751858. https://doi.org/10.1186/s13104-019-4611-7
  6. Bevzo VV. Vplyv tryvaloho vvedennya hlutamatu natriyu na riven deyakykh metabolitiv azotystoho obminu v syrovattsi krovi shchuriv [The effect of long-term administration of monosodium glutamate on the level of some metabolites of nitrogen metabolism in the serum of rats]. Visnyk problem biolohiyi ta medytsyny. 2017;135(1): 83-86. [Ukrainian]
  7. Konopelnyuk IYu, Pybytko IYu, Tsyryuk OI, Falalyeyeva TM. Patofiziolohichna kharakterystyka eksperymeentalnoi modeli ozhyrinnya u samyts shchuriv, vyklykanoi neonatalnym vvedennyam hlutamatu natriyu [Pathophysiology characteristics of the experimental model of obesity in female rats induced neonatal administration of monosodium glutamate]. ScienceRise: Biological Science. 2016;3(2):14-8. [Ukrainian] https://doi.org/10.15587/2519-8025.2016.83570
  8. Sasaki-Hamada S, Hojyo Y, Mizumoto R, Koyama H, Yanagisawa S, Oka JI. Cognitive and hippocampal synaptic profiles in monosodium glutamate-induced obese mice. Neurosci Res. 2021 Sep;170:201-7. PMID: 32949668. https://doi.org/10.1016/j.neures.2020.08.005
  9. Bevzo VV. Doslidzhennya toksodynamiky hlutamatu natriyu na orhanizm shchuriv za umovy tryvaloho yoho vvedennya [Studies of the toxodynamics of monosodium glutamate on the body of rats under prolonged administration]. Klinichna ta eksperymentalna patolohiya. 2016;15(2(56)):13-16. [Ukrainian]
  10. Simrok KT. Ultrastruktura biominerala dentynu nyzhnoho riztsya shchuriv pislya 60-dennoho zastosuvannya hlutamatu natriya i ionizuyuchoho vyprominyuvannya [Ultrastructure of the dentin biomineral of the lower incisor of rats after 60 days of application of monosodium glutamate and ionizing radiation]. Halytskyi likarskyi visnyk. 2015;22(36):81-83. [Ukrainian]
  11. Hordiyenko LP, Neporada KS. Metabolichni zminy u tkanynakh slynnykh zaloz shchuriv za umov vysokokaloriynoi diyety [Metabolic changes in the salivary glands of rats under a high-calorie diet]. Visnyk UMSA. Aktualni problemy suchasnoi medytsyny. 2015;15(1):163-167. [Ukrainian]
  12. Hordiyenko LP, Yeroshenko HA, Neporada KS. Osoblyvosti morfolohichnykh zmin v slynnykh zalozakh shchuriv za umov hlutamat indukovanoho ozhyrinnya [Features of morphological changes in the salivary glands of rats under conditions of glutamate-induced obesity]. Svit medytsyny ta biolohiyi. 2015; 2 (49):93-99. [Ukrainian]
  13. Hordiyenko LP, Yeroshenko HA, Neporada KS. Morfolohichni zminy v slynnykh zalozakh shchuriv za umov diyet-indukovanoho ozhyrinnya [Morphological changes in the salivary glands of rats under conditions of diet-induced obesity]. Svit medytsyny ta biolohiyi. 2015;4(53):108-110. [Ukrainian]
  14. Leshchenko IV, Shevchuk VH, Savchenyuk OA, Falalyeyeva TM, Sukhodolya SA, Berehova TV. Ekzokrynna funktsiya pidshlunkovoi zalozy u shchuriv za umov eksperymentalnoho ozhyrinnya [Exocrine function of the pancreas in rats under experimental obesity]. Fiziolohichnyi zhurnal. 2014;60(1):41-48. [Ukrainian]. PMID: 24809173. https://doi.org/10.15407/fz60.01.041
  15. Leshchenko IV, Shevchuk VH, Falalyeyeva TM, Berehova TV. Vplyv tryvaloho vvedennya hlutamatu natriyu na strukturu pidshlunkovoi zalozy shchuriv [The effect of prolonged administration of monosodium glutamate on the structure of the pancreas of rats]. Fiziolohichnyi zhurnal. 2012;58(2):59-65. [Ukrainian]. PMID: 22873054. https://doi.org/10.15407/fz58.02.059
  16. Agus A, Denizot J, Thévenot J, Martinez-Medina M, Massier S, Sauvanet P, et al. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci Rep. 2016 Jan;6(1):19032. PMID: 26742586. PMCID: PMC4705701. https://doi.org/10.1038/srep19032
  17. Banerjee A, Mukherjee S, Maji BK. Efficacy of Coccinia grandis against monosodium glutamate induced hepato-cardiac anomalies by inhibiting NF-kB and caspase 3 mediated signalling in rat model. Hum Exp Toxicol. 2021 Nov;40(11):1825-51. PMID: 33887972. https://doi.org/10.1177/09603271211010895
  18. Takai A, Kikuchi K, Kajiyama Y, Sugiura A, Negishi M, Tsunashima H, et al. Serological and histological examination of a nonalcoholic steatohepatitis mouse model created via the administration of monosodium glutamate. Int Sch Res Notices. 2014(3):1-7. PMID: 27433515. PMCID: PMC4897218. https://doi.org/10.1155/2014/725351
  19. Mondal M, Sarkar K, Nath PP, Paul G. Monosodium glutamate suppresses the female reproductive function by impairing the functions of ovary and uterus in rat. Environ Toxicol. 2018 Feb;33(2):198-208. PMID: 29119727. https://doi.org/10.1002/tox.22508
  20. Abdollahzadeh A, Kianifard D, Saiah GV. Study of the long-term and dose dependent effects of methylphenidate and monosodium glutamate on the hormonal alterations of the pituitary-testicular axis and sperm analysis in adolescence rats. Bull Univ Agric Sci Vet Med Cluj-Napoca Vet Med. 2017;74(1):75-81. https://doi.org/10.15835/buasvmcn-vm:12607
  21. Umbuzeiro GA, Heringa M, Zeiger E. In Vitro Genotoxicity Testing: Significance and Use in Environmental Monitoring. Adv Biochem Eng Biotechnol. 2017;157:59-80. PMID: 27631084. https://doi.org/10.1007/10_2015_5018
  22. Bevzo VV. Superoksyddysmutazna, katalazna y zahalna antyoksydantna aktyvnosti krovi ta pechinky shchuriv za diyi hlutamatu natriyu [Superoxide, Catalase and General Antioxidant Activity of Blood and Liver of Rats Based on Action of MSG]. Ukr Zh Med Biol Sportu. 2017;1(3):12-16. [Ukrainian]. https://doi.org/10.26693/jmbs02.01.012
  23. Kolenchenko OO, Falalyeyeva TM, Berehova TV, Kuryk OH. Strukturno-funktsionalni zminy v stintsi tovstoho kyshechnyka za umov vvedennya hlutamatu natriyu [Structural-Functional Changes in the Colon’s Wall under Conditions of Sodium Glutamate Usage]. Ukr Zh Med Biol Sportu. 2017;5(7):39-43. [Ukrainian]. https://doi.org/10.26693/jmbs02.05.039
  24. Rutska AV, Hetsko NV, Krynytska IYa. Toksychnyi vplyv hlutamatu natriyu na zhyvyi orhanizm [Toxic effects of monosodium glutamate on living organisms]. Medical and Clinical Chemistry. 2017;19(1):119-127. [Ukrainian]. https://doi.org/10.11603/mcch.2410-681X.2017.v0.i1.7685
  25. Pongking T, Haonon O, Dangtakot R, Onsurathum S, Jusakul A, Intuyod K, et al. A combination of monosodium glutamate and high-fat and high-fructose diets increases the risk of kidney injury, gut dysbiosis and host-microbial co-metabolism. PLoS One. 2020 Apr;15(4):e0231237. PMID: 32267892. PMCID: PMC7141667. https://doi.org/10.1371/journal.pone.0231237
  26. Albrahim T, Binobead MA. Roles of Moringa oleifera Leaf Extract in Improving the Impact of High Dietary Intake of Monosodium Glutamate-Induced Liver Toxicity, Oxidative Stress, Genotoxicity, DNA Damage, and PCNA Alterations in Male Rats. Oxid Med Cell Longev. 2018 Dec;2018:4501097. PMID: 30647808. PMCID: PMC6311796. https://doi.org/10.1155/2018/4501097
  27. Hernández Bautista RJ, Mahmoud AM, Königsberg M, López Díaz Guerrero NE. Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother. 2019 Mar;111:503-16. PMID: 30597304. https://doi.org/10.1016/j.biopha.2018.12.108
  28. Konrad SP, Farah V, Rodrigues B, Wichi RB, Machado UF, Lopes HF, at al. Monosodium Glutamate Neonatal Treatment Induces Cardiovascular Autonomic Function Changes in Rodents. Clinics (Sao Paulo). 2012;67(10):1209-1214. https://doi.org/10.6061/clinics/2012(10)14
  29. Kumar P, Kraal AZ, Prawdzik AM, Ringold AE, Ellingrod V. Dietary Glutamic Acid, Obesity, and Depressive Symptoms in Patients With Schizophrenia. Front Psychiatry. 2021 Jan;11:620097. PMID: 33551881. PMCID: PMC7859478. https://doi.org/10.3389/fpsyt.2020.620097
  30. Kraal AZ, Arvanitis NR, Jaeger AP, Ellingrod VL. Could Dietary Glutamate Play a Role in Psychiatric Distress? Neuropsychobiology. 2020;79(1):13-9. PMID: 30699435. PMCID: PMC6667320. https://doi.org/10.1159/000496294
  31. Albrahim T, Binobead MA. Roles of Moringa oleifera Leaf Extract in Improving the Impact of High Dietary Intake of Monosodium Glutamate-Induced Liver Toxicity, Oxidative Stress, Genotoxicity, DNA Damage, and PCNA Alterations in Male Rats. Oxid Med Cell Longev. 2018 Dec;2018:4501097. PMID: 30647808. PMCID: PMC6311796. https://doi.org/10.1155/2018/4501097
  32. Syed Imam R, Imam Rabbani S. Genotoxicity of Monosodium Glutamate: A Review on its Causes, Consequences and Prevention. Undefined. 2019;53(4):S510-7. https://doi.org/10.5530/ijper.53.4s.145
  33. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009 Jul;6(7):e1000100. PMID: 19621070. PMCID: PMC2707010. https://doi.org/10.1371/journal.pmed.1000100
  34. Chakraborty SP. Patho-physiological and toxicological aspects of monosodium glutamate. Toxicol Mech Methods. 2019 Jul;29(6):389-96. PMID: 30273089. https://doi.org/10.1080/15376516.2018.1528649
  35. Bera TK, Kar SK, Yadav PK, Mukherjee P, Yadav S, Joshi B. Effects of monosodium glutamate on human health: a systematic review. World J Pharm Res. 2017;5:139-44.
  36. Zanfirescu A, Ungurianu A, Tsatsakis AM, Nițulescu GM, Kouretas D, Veskoukis A, et al. A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Saf. 2019 Jul;18(4):1111-34. PMID: 31920467. PMCID: PMC6952072. https://doi.org/10.1111/1541-4337.12448
  37. Solomon U, Gabriel OO, Henry EO, Adrian IO, Anthony TE. Effect of monosodium glutamate on behavioral phenotypes, biomarkers of oxidative stress in brain tissues and liver enzymes in mice. World J Neurosci. 2015;5(5):339-49. https://doi.org/10.4236/wjns.2015.55033
  38. Wang Z, Zhang J, Wu P, Luo S, Li J, Wang Q, et al. Effects of oral monosodium glutamate administration on serum metabolomics of suckling piglets. J Anim Physiol Anim Nutr (Berl). 2020 Jan;104(1):269-79. PMID: 31553089. https://doi.org/10.1111/jpn.13212
  39. Fouda YB, Ngo Lemba Tom E, Atsamo AD, Bonabe C, Dimo T. Effects of stem bark aqueous extract of Fagara tessmannii Engl (Rutaceae) on cardiovascular risks related to monosodium glutamate-induced obesity in rat: in vivo and in vitro assessments. J Ethnopharmacol. 2020 Oct;260:112972. PMID: 32446928. https://doi.org/10.1016/j.jep.2020.112972
  40. Caetano LC, Bonfleur ML, Ribeiro RA, Nardelli TR, Lubaczeuski C, do Nascimento da Silva J, et al. Taurine supplementation regulates Iκ-Bα protein expression in adipose tissue and serum IL-4 and TNF-α concentrations in MSG obesity. Eur J Nutr. 2017 Mar;56(2):705-13. PMID: 26621632. https://doi.org/10.1007/s00394-015-1114-8
  41. Hernández Bautista RJ, Mahmoud AM, Königsberg M, López Díaz Guerrero NE. Obesity: pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother. 2019;111:503-16. PMID: 30597304. https://doi.org/10.1016/j.biopha.2018.12.108
  42. Farhat F, Nofal S, Raafat EM, Ali A, Ahmed E. Monosodium glutamate safety, neurotoxicity and some recent studies. J Pharm Sci. 2021 Sep;64:222-243. https://doi.org/10.21608/ajps.2021.187828
  43. Huang XT, Li C, Peng XP, Guo J, Yue SJ, Liu W, et al. An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci Rep. 2017 Mar;7(1):44120. PMID: 28303894. PMCID: PMC5356012. https://doi.org/10.1038/srep44120
  44. Huang XT, Yue SJ, Li C, Huang YH, Cheng QM, Li XH, et al. A sustained activation of pancreatic NMDARs is a novel factor of β-Cell apoptosis and dysfunction. Endocrinology. 2017 Nov;158(11):3900-13. PMID: 28938426. https://doi.org/10.1210/en.2017-00366
  45. Niaz K, Zaplatic E, Spoor J. Extensive use of monosodium glutamate: A threat to public health? EXCLI J. 2018 Mar;17:273-8.
  46. Tanner LB, Goglia AG, Wei MH, Sehgal T, Parsons LR, Park JO, et al. Four key steps control glycolytic flux in mammalian cells. Cell Syst. 2018 Jul;7(1):49-62. PMID: 29960885. PMCID: PMC6062487. https://doi.org/10.1016/j.cels.2018.06.003
  47. Yulyaningsih E, Rudenko IA, Valdearcos M, Dahlén E, Vagena E, Chan A, et al. Acute lesioning and rapid repair of hypothalamic neuronsoutside the blood-brain barrier. Cell Rep. 2017 Jun;19(11):2257-71. PMID: 28614713. PMCID: PMC5651178. https://doi.org/10.1016/j.celrep.2017.05.060
  48. Altaher W, Alhelo H, Chosky D, Kulesza RJ Jr. Neonatal exposure to monosodium glutamate results in impaired auditory brainstem structure and function. Hear Res. 2021 Jun;405:108243. PMID: 33865019. https://doi.org/10.1016/j.heares.2021.108243
  49. Foran L, Blackburn K, Kulesza RJ. Auditory hindbrain atrophy and anomalous calcium binding protein expression after neonatal exposure to monosodium glutamate. Neurosci. 2017 Mar;344:406-17. PMID: 28087338. https://doi.org/10.1016/j.neuroscience.2017.01.004
  50. Foran L, Kupelian C, Laroia S, Esper J, Kulesza RJ. Neonatal exposure to monosodium glutamate results in dysmorphology of orofacial lower motor neurons. Folia Morphol (Warsz). 2017;76(4):582-9. PMID: 28612917. https://doi.org/10.5603/FM.a2017.0052
  51. Hazzaa SM, Abdelaziz SA, Eldaim MA, Abdel-Daim MM, Elgarawany GE. Neuroprotective Potential of Allium sativum against Monosodium Glutamate-Induced Excitotoxicity: Impact on Short-Term Memory, Gliosis, and Oxidative Stress. Nutrients. 2020 Apr;12(4):1028. PMID: 32290031. PMCID: PMC7230314. https://doi.org/10.3390/nu12041028
  52. Banerjee A, Mukherjee S, Maji BK. Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: an overview. Toxicol Rep. 2021 Apr;8:938-61. PMID: 34026558. PMCID: PMC8120859. https://doi.org/10.1016/j.toxrep.2021.04.009
  53. Liu Y, Zhou L, Xu HF, Yan L, Ding F, Hao W, et al. A preliminary experimental study on the cardiac toxicity of glutamate and the role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor in rats. Chin Med J (Engl). 2013 Apr;126(7):1323-32.
  54. Airaodion AI, Ogbuagu EO, Osemwowa EU, Ogbuagu U, Esonu CE, Agunbiade AP, et al. Toxicological effect of monosodium glutamate in seasonings on human health. Global J Nutr Food Sci. 2019;1(5):40-9. https://doi.org/10.33552/GJNFS.2019.01.000522
  55. Hazzaa SM, El-Roghy ES, Abd Eldaim MA, Elgarawany GE. Monosodium glutamate induces cardiac toxicity via oxidative stress, fibrosis, and P53 proapoptotic protein expression in rats. Environ Sci Pollut Res Int. 2020 Jun;27(16):20014-24. PMID: 32236804. https://doi.org/10.1007/s11356-020-08436-6
  56. Majewski M, Jurgoński A, Fotschki B, Juśkiewicz J. The toxic effects of monosodium glutamate (MSG) - The involvement of nitric oxide, prostanoids and potassium channels in the reactivity of thoracic arteries in MSG-obese rats. Toxicol Appl Pharmacol. 2018 Nov;359:62-9. PMID: 30244120. https://doi.org/10.1016/j.taap.2018.09.016
  57. Aghajani M, Imani A, Faghihi M, Mahdavi MRV, Mahboubi S, Moradi F, et al. Does increased nitric oxide production and oxidative stress due to high fat diet affect cardiac function after myocardial infarction? J Cell Mol Anesth. 2017;2:3-8.
  58. Triantafyllou E, Woollard KJ, McPhail MJ, Antoniades CG, Possamai LA. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front Immunol. 2018 Dec;9:2948. PMID: 30619308. PMCID: PMC6302023. https://doi.org/10.3389/fimmu.2018.02948
  59. Banerjee A, Mukherjee S, Maji BK. Efficacy of Coccinia grandis against monosodium glutamate induced hepato-cardiac anomalies by inhibiting NF-kB and caspase 3 mediated signalling in rat model. Hum Exp Toxicol. 2021 Nov;40(11):1825-51. PMID: 33887972. https://doi.org/10.1177/09603271211010895
  60. Duan Y, Zeng L, Zheng C, Song B, Li F, Kong X, et al. Inflammatory links between high fat diets and diseases. Front Immunol. 2018 Nov;9:2649. PMID: 30483273. PMCID: PMC6243058. https://doi.org/10.3389/fimmu.2018.02649
  61. Nosseir NS, Ali MH, Ebaid HM. A histological and morphometric study of monosodium glutamate toxic effect on testicular structure and potentiality of recovery in adult albino rats. Res J Biol Sci. 2012;2:66-78.
  62. Eweka A, Om'iniabohs F. Histological studies of the effects of monosodium glutamate on the ovaries of adult wistar rats. Ann Med Health Sci Res. 2011 Jan;1(1):37-43. https://doi.org/10.4314/abs.v9i1.66569
  63. Scalise M, Pochini L, Galluccio M, Console L, Indiveri C. Glutamine transport and mitochondrial metabolism in cancer cell growth. Front Oncol. 2017 Dec;7:306-10. PMID: 29376023. PMCID: PMC5770653. https://doi.org/10.3389/fonc.2017.00306
  64. Mohammed SS. Monosodium glutamate-induced genotoxicity in rat palatal mucosa. Tanta Dent J. 2017;14(3):112-9. https://doi.org/10.4103/tdj.tdj_20_17