ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 6 of 46
Up
JMBS 2022, 7(1): 56–61
https://doi.org/10.26693/jmbs07.01.056
Medicine. Reviews

Modern Views on the Development of the Aorta and the Formation of the Topography of its Individual Branches in the Early Period of Human Ontogenesis

Stelmakh G. Ya.
Abstract

Despite the introduction of the latest methods of prenatal diagnosis and treatment of vascular abnormalities linked with impaired aortic arch, currently, relevant issues of embryology are the regularity of normal morphogenesis and topography of the aorta in utero. The purpose of the study. To analyze the sources of modern scientific literature on the development and formation of topographic and anatomical relationships of the aorta at the early stages of the prenatal period of human ontogenesis. Results and discussion. Based on the analysis of sources of the modern scientific literature, the information about prenatal morphogenesis and the formation of topographic and anatomical relationships of the aorta and its individual branches is given. Some aortic anomalies were considered, namely the preconditions of congenital aneurysms of the thoracic aorta were analyzed in details. The analysis of literature references demonstrated that the persistence and disappearance of the particular segments of the ventral and dorsal aorta, as well as aortic arches, form the preconditions for the development of different aortic anomalies. Stenosis or atresia of various parts of the aortic arch can have severe clinical consequences. Based on the information from literature sources, it can be presumed that the etiological factors of esophageal atresia and tracheoesophageal fistula are poor esophageal blood supply at the early stages of embryogenesis and genetic mutations. One of the reasons for the short esophagus is the prolonged retention of the stomach at the pleural cavity by prematurely growing aortic vessels. This etiological cause can also lead to the development of Barrett's esophagus. One of the causes for prolongation or delay of recanalization of the esophageal lumen, mainly in the critical period of its morphogenesis (7 weeks of fetal development), which can lead to atresia and stenosis, is obliteration of the esophageal branches of the thoracic aorta in early embryogenesis. Conclusion. In-depth data on the sources and timing of laying and prenatal morphogenesis of the aorta and its branches become a factor that combines usually disparate information on the anatomy and physiology of the object of study into a single morpho-functional knowledge about it, and allows to designate morphological conditions for birth defects development of arterial vessels and is the basis for further research of new methods and ways of surgical interventions

Keywords: aorta, aortic arches, thoracic aorta, morphogenesis, topography, human

Full text: PDF (Ukr) 259K

References
  1. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873-87. PMID: 21925313. https://doi.org/10.1016/j.cell.2011.08.039
  2. Augustin HG, Koh GY. Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science. 2017;357(6353):eaal2379. PMID: 28775214. https://doi.org/10.1126/science.aal2379
  3. Raybaud C. Normal and abnormal embryology and development of the intracranial vascular system. Neurosurg Clin N Am. 2010;21(3):399-426. PMID: 20561492. https://doi.org/10.1016/j.nec.2010.03.011
  4. Shmydt EYu, Prylutskaya EYu, Grytsay AO. Rasslayvayushchaya anevryzma aorty kak odna yz vedushchykh prychyn letalnosty pry syndrome Marfana na prymere klynycheskogo sluchaya [Stratifying aortic aneurysm as one of the leading causes of mortality in Marfan syndrome on the example of a clinical case]. Medytsyna neotlozhnykh sostoyanyy. 2020;16(1):95-99. [Russian]. https://doi.org/10.22141/2224-0586.16.1.2020.196936
  5. Kuzmychev DE, Chyrkov SV, Ylyna MR, Vyltsev YM. K voprosu dyagnostyky anevryzmy grudnoy chasty aorty [On the diagnosis of thoracic aortic aneurysm]. Problemy ekspertyzy v medytsyne. 2013;3:40-42. [Russian]
  6. Tsygykalo OV. Rozvytok i stanovlennya topografiyi golovnykh komponentiv koreniv legen lyudyny v prenatalnomu periodi ontogenezu [Development and formation of topography of the main components of human lung roots in the prenatal period of ontogenesis]. Chernivtsi: BDMA; 2002. 108 s. [Ukrainian]
  7. Panagouli E, Tsoucalas G, Papaioannou T, Fiska A, Venieratos D, Skandalakis P. Right and left common carotid arteries arising from the branchiocephalic, a rare variation of the aortic arch. Anat Cell Biol. 2018;51(3):215-217. PMID: 30310716. PMCID: PMC6172589. https://doi.org/10.5115/acb.2018.51.3.215
  8. Vaillancourt C, Lafond J. Human embryogenesis: overview. Methods Mol Biol. 2009;550:3-7. PMID: 19495694. https://doi.org/10.1007/978-1-60327-009-0_1
  9. Kadir S. Regional anatomy of the thoracic aorta. In: Atlas of normal and variant angiographic anatomy. 1st ed. Philadelphia: Saunders; 1991, p.19-54.
  10. Udan RS, Culver JC, Dickinson ME. Understanding vascular development. Wiley Interdiscip Rev Dev Biol. 2013;2(3):327-46. PMID: 23799579. PMCID: PMC4146572. https://doi.org/10.1002/wdev.91
  11. Schoenwolf GC, Blel SB, Brauer PR, Francis-West PH. Larsen’s Human Embryology. 5h ed. 2015. p. 304-327.
  12. Besh LV, Matsyura OI, Yaskiv VB, Konyk MV, Petrov VF, Dvorchyn LV, et al. Dosvid diagnostyky pryrodzhenoyi anomaliyi arterialnoyi systemy v dytyny z bronkhialnoyu obstruktsiyeyu: klinichnyy vypadok ta informatsiyna dovidka [Experience in the diagnosis of congenital anomalies of the arterial system in a child with bronchial obstruction: a clinical case and information]. Zdorove rebenka. 2017;12(5):113-118. [Ukrainian]. https://doi.org/10.22141/2224-0551.12.5.2017.109283
  13. Suh YJ, Kim GB, Kwon BS, Bae EJ, Noh CI, Lim HG, et al. Clinical Course of Vascular Rings and Risk Factors Associated With Mortality. Korean Circ J. 2012;42(4):252-258. PMID: 22563338. PMCID: PMC3341422. https://doi.org/10.4070/kcj.2012.42.4.252
  14. Lopushnyak LYa, Khmara TV, Marchuk OF, Boychuk OM. Osoblyvosti embriotopografiyi dugy aorty ta yiyi gilok [Features of embryotopography of the aortic arch and its branches]. Materialy VII Kongresu naukovogo tovarystva anatomiv, gistologiv, embriologiv, topografoanatomiv Ukrayiny. Odesa, 2-4 zhovtnya 2019 r. Odesa: Bondarenko MO; 2019. s. 106-107. [Ukrainian]
  15. Szpinda M. Length growth of the various aortic segments in human foetuses. Folia Morphol (Warsz). 2008;67(4): 45-250. PMID: 19085863
  16. Rezzani R, Nardo L, Favero G, Peroni M, Rodella LF. Thymus and aging: morphological, radiological, and functional overview. Age (Dordr). 2014;36(1):313-351. PMID: 23877171. PMCID: PMC3889907. https://doi.org/10.1007/s11357-013-9564-5
  17. Szpinda M, Brazis P, Elminowska-Wenda G, Wiśniewski M. Morphometric study of the aortic and great pulmonary arterial pathways in human foetuses. Ann Anat. 2006;188(1):25-31. PMID: 16447909. https://doi.org/10.1016/j.aanat.2005.08.014
  18. Szpinda M. The normal growth of the thoracic aorta in human foetuses. Folia Morphol (Warsz). 2007;66(2):131-137. PMID: 17594672
  19. Gielecki JS, Wilk R, Syc B, Musiał-Kopiejka M, Piwowarczyk-Nowak A. Digital-image analysis of the aortic arch's development and its variations. Folia Morphol (Warsz). 2004;63(4):449-454.
  20. Tapia-Nañez M, Landeros-Garcia GA, Sada-Treviño MA, Pinales-Razo R, Quiroga-Garza A, Fernandez-Rodarte BA, et al. Morphometry of the aortic arch and its branches. A computed tomography angiography-based study. Folia Morphol (Warsz). 2021;80(3):575-582. PMID: 32844389. https://doi.org/10.5603/FM.a2020.0098
  21. Tawfik AM, Sobh DM, Ashamallah GA, Batouty NM. Prevalence and Types of Aortic Arch Variants and Anomalies in Congenital Heart Diseases. Acad Radiol. 2019;26(7):930-936. PMID: 30266547. https://doi.org/10.1016/j.acra.2018.08.023
  22. Hirata K. [A metrical study of the aorta and main aortic branches in the human fetus]. Nihon Ika Daigaku Zasshi. 1989;56(6):584-591. [Japanese]. PMID: 2606949. https://doi.org/10.1272/jnms1923.56.584
  23. Akgun V, Battal B, Sari S. Bronchial arteries: normal anatomy, variation and radiologic evaluation. Surg Radiol Anat. 2014;36(1):103-104. PMID: 23716139. https://doi.org/10.1007/s00276-013-1141-1
  24. van Lennep M, Singendonk MMJ, Dall'Oglio L, Gottrand F, Krishnan U, Terheggen-Lagro SWJ, et al. Oesophageal atresia. Nat Rev Dis Primers. 2019;5(1):26. PMID: 31000707. https://doi.org/10.1038/s41572-019-0077-0
  25. Geboes K, Geboes KP, Maleux G. Vascular anatomy of the gastrointestinal tract. Best Pract Res Clin Gastroenterol. 2001;15(1):1-14. PMID: 11355897. https://doi.org/10.1053/bega.2000.0152
  26. Davidović L, Koncar I, Marković D, Sindjelić R, Colić M. [Injuries of the thoracic aorta and its branches]. Vojnosanit Pregl. 2011;68(3):257-265. [Serbian]. PMID: 21526554. https://doi.org/10.2298/VSP1103257D
  27. Mohy-Ud-Din N, Krill TS, Shah AR, Chatila AT, Singh S, Bilal M, et al. Barrett's esophagus: What do we need to know? Dis Mon. 2020;66(1):100850. PMID: 30808502. https://doi.org/10.1016/j.disamonth.2019.02.003
  28. Berrocal T, Madrid C, Novo S, Gutiérrez J, Arjonilla A, Gómez-León N. Congenital anomalies of the tracheobronchial tree, lung, and mediastinum: embryology, radiology, and pathology. Radiographics. 2004;24(1):e17. PMID: 14610245. https://doi.org/10.1148/rg.e17
  29. Hanneman K, Newman B, Chan F. Congenital Variants and Anomalies of the Aortic Arch. Radiographics. 2017;37(1):32-51. PMID: 27860551. https://doi.org/10.1148/rg.2017160033
  30. Geboes K, Geboes KP, Maleux G. Vascular anatomy of the gastrointestinal tract. Best Pract Res Clin Gastroenterol. 2001;15(1):1-14. PMID: 11355897. https://doi.org/10.1053/bega.2000.0152
  31. Nishimura Y, Hsu HH, Wang PC. Detection of initial angiogenesis from dorsal aorta into metanephroi and elucidation of its role in kidney development. Regen Ther. 2016;4: 7-35. PMID: 31245485. PMCID: PMC6581801. https://doi.org/10.1016/j.reth.2016.01.003