ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 56 of 68
Up
JMBS 2021, 6(5): 394–400
https://doi.org/10.26693/jmbs06.05.394
Biology

Multiple Effects of Chronic Low-Dose Cadmium Exposure on the Liver, Osteogenesis, and Hematopoiesis in Animals and Humans

Zemlianyi O. A. 1, Gerasymchuk P. G. 2, Zaitsev L. O. 2, Mionchynsky D. O. 2, Kharchenko O. I. 2, Samoilenko I. I. 2, Alekseenko V. V. 2, Shemet S. A. 3
Abstract

Cadmium salts are among the TOP-20 of the most dangerous compounds for animals in terms of toxicity. At the same time, today there is a paradigm shift in the studies of cadmium effects: in contrast to the acute effects of intoxication, more importance and practical relevance is attained by studying the continued chronic exposure to small cadmium doses (Chronic Low Cd Exposure) which can take place in real environmental conditions of industrially polluted regions and already impacts about 10% of the world population. While the early changes in kidneys and marker parameters of the urinary system under the action of cadmium are being studied quite actively, cadmium effects on other organs and systems in the body are insufficiently investigated. The purpose of the study was to analyse the multiple effects of cadmium on liver function, osteogenesis, haematopoiesis, and haemostasis in animals and humans. Protective mechanisms that reduce cadmium accumulation in hepatocytes compared to renal cells, in particular, the role of cellular transporters of biogenic metal ions (Fe2+, Zn2+, Mn2+, Cu2+), are systematized. Results and discussion. Cadmium mostly uses divalent metal transporter 1 and Zrt/Irt-like transporters, such as ZIP8 and ZIP14. Given the role of liver in the chelation and deposition of cadmium in the form of complexes with metallothioneins and glutathione, the significant potential of chelating and antioxidant hepatoprotectants to reduce negative effects is suggested. The role of exogenous chemical chelators and antioxidants in detoxifying cadmium is supported by the studies of other cadmium-binding molecules (glutathione, polyphenols, anthocyanins). Both direct effects of cadmium on the osteogenesis and calcium metabolism, and indirect effects on osteoblasts and osteoclasts are considered. In particular, current data on cadmium role in the development of endemic disease Itai-Itai in Japan is discussed. Notably, cadmium effect in children has a special hazards and long-term consequences. Data on cadmium role in interfering Ca2+ metabolism, particularly its effects on epithelial calcium channels (TRPV5) and Na-phosphate co-transporters (SLC34A1) are summarized. Conclusion. Current data suggest that chronic effects of cadmium in ultra-low concentrations upon the osteogenesis are even more evident than in renal system. A review of current data on cadmium effects upon the hematopoietic system in animal models is presented. The earliest studies found relation between cadmium and haemoglobin decrease, which could be mediated by interfering with intracellular Fe traffic, and effects on erythropoietin synthesis. Cadmium affected haemostasis and increased platelet aggregation. Animal studies suggest that chronic cadmium toxicity leads to hypercoagulation and increases the risks of thrombosis. Based on the summarized data, it is concluded that the investigating cadmium effects on hematopoiesis and hemostasis is a promising area for further studies of chronic low-dose cadmium exposure

Keywords: chronic low-dose cadmium exposure, hepatotoxicity, osteogenesis, haematopoiesis, haemostasis

Full text: PDF (Ukr) 270K

References
  1. ATSDR. Toxicological Profile for Cadmium. US Department of Health and Humans Services. Public Health Service, Centres for Diseases Control, Atlanta, GA. 2008.
  2. Thévenod F, Petering D, Templeton DM, Lee WK, Hartwig A, Eds. Cadmium Interaction with Animal Cells. Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-89623-6
  3. Himeno S, Aoshima K, Eds. Cadmium toxicity: new aspects in human disease, rice contamination, and cytotoxicity. Springer; 2019. https://doi.org/10.1007/978-981-13-3630-0
  4. Zemlianyi O. A. Deiaki osoblyvosti vyvedennia kadmiiu z ekskretsiiamy laboratornykh shchuriv v umovakh eksperymentu. Biolohichnyi Visnyk Melitopolskoho derzhavnoho pedahohichnoho universytetu imeni Bohdana Khmelnytskoho. 2014; 4(3): 55-69. [Ukrainian]
  5. Thévenod F, Lee WK. Toxicology of cadmium and its damage to mammalian organs. Met Ions Life Sci. 2013; 11: 415-90. https://www.ncbi.nlm.nih.gov/pubmed/23430781. https://doi.org/10.1007/978-94-007-5179-8_14
  6. Rikans LE, Yamano T. Mechanisms of cadmium‐mediated acute hepatotoxicity. J Biochem Mol Toxicol. 2013; 14(2): 110-117. https://doi.org/10.1002/(SICI)1099-0461(2000)14:2<110::AID-JBT7>3.0.CO;2-J
  7. Chan HM, Zhu LF, Zhong R, Grant D, Goyer RA, Cherian MG. Nephrotoxicity in rats following liver transplantation from cadmium-exposed rats. Toxicol Appl Pharmacol. 1993; 123(1): 89-96. https://www.ncbi.nlm.nih.gov/pubmed/8236266. https://doi.org/10.1006/taap.1993.1225
  8. Renu K, Chakraborty R, Haritha M, Rajeshwari K, Famurewa AC, Madhyastha H, et al. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) induced hepatotoxicity - A review. Chemosphere. 2021; 271:
  9. 129735. https://www.ncbi.nlm.nih.gov/pubmed/33736223. https://doi.org/10.1016/j.chemosphere.2021.129735
  10. Pham TND, Segui JA, Fortin C, Campbell PG, Denizeau F, Jumarie C. Cadmium uptake in rat hepatocytes in relation to speciation and to complexation with metallothionein and albumin. J Cell Physiol. 2004; 201(2): 320-330. https://www.ncbi.nlm.nih.gov/pubmed/15334666. https://doi.org/10.1002/jcp.20063
  11. Ohta H, Ohba K. Involvement of metal transporters in the intestinal uptake of cadmium. J Toxicol Sci. 2020; 45(9): 539-548. https://www.ncbi.nlm.nih.gov/pubmed/32879253. https://doi.org/10.2131/jts.45.539
  12. Fujishiro H, Okugaki S, Kubota K, Fujiyama T, Miyataka H, Himeno S. The role of ZIP8 down‐regulation in cadmium‐resistant metallothionein‐null cells. J Appl Toxicol. 2009; 29(5): 367-373. https://www.ncbi.nlm.nih.gov/pubmed/19194888. https://doi.org/10.1002/jat.1419
  13. Hao Q, Hong SH, Maret W. Lipid raft‐dependent endocytosis of metallothionein in HepG2 cells. J Cell Physiol. 2007; 210(2): 428-435. https://www.ncbi.nlm.nih.gov/pubmed/17111383. https://doi.org/10.1002/jcp.20874
  14. Sabolic I, Ljubojevic M, Herak-Kramberger CM, Brown D. Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Renal Physiol. 2002 Dec; 283(6): F1389-402. https://www.ncbi.nlm.nih.gov/pubmed/12426237. https://doi.org/10.1152/ajprenal.00066.2002
  15. Sabolić I, Breljak D, Škarica M, Herak-Kramberger CM. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals. 2010; 23(5): 897-926. https://www.ncbi.nlm.nih.gov/pubmed/20549307. https://doi.org/10.1007/s10534-010-9351-z
  16. Đukić-Ćosić D, Baralić K, Javorac D, Djordjevic AB, Bulat Z. An overview of molecular mechanisms in cadmium toxicity. Curr Opin Toxicol. 2020; 19: 56-62. https://doi.org/10.1016/j.cotox.2019.12.002
  17. Abu-El-Zahab HS, Hamza RZ, Montaser MM, El-Mahdi MM, Al-Harthi WA. Antioxidant, antiapoptotic, antigenotoxic, and hepatic ameliorative effects of L-carnitine and selenium on cadmium-induced hepatotoxicity and alterations in liver cell structure in male mice. Ecotoxicol Environment. 2019; 173: 419-428. https://www.ncbi.nlm.nih.gov/pubmed/30798185. https://doi.org/10.1016/j.ecoenv.2019.02.041
  18. Xu Y, Mu W, Li J, Ba Q, Wang H. Chronic cadmium exposure at environmental-relevant level accelerates the development of hepatotoxicity to hepatocarcinogenesis. Sci Total Environment. 2021; 783: 146958. https://www.ncbi.nlm.nih.gov/pubmed/33866181. https://doi.org/10.1016/j.scitotenv.2021.146958
  19. Lee DH, Lim JS, Song K, Boo Y, Jacobs Jr DR. Graded associations of blood lead and urinary cadmium concentrations with oxidative-stress-related markers in the US population: Results from the Third National Health and Nutrition Examination Survey. Environment Health Perspect. 2016; 114(3): 350-35. https://www.ncbi.nlm.nih.gov/pubmed/16507456. https://www.ncbi.nlm.nih.gov/pmc/articles/1392227. https://doi.org/10.1289/ehp.8518
  20. Mężyńska M, Brzóska MM. Review of polyphenol‐rich products as potential protective and therapeutic factors against cadmium hepatotoxicity. J Appl Toxicol. 2019; 39(1): 117-145. https://www.ncbi.nlm.nih.gov/pubmed/30216481. https://doi.org/10.1002/jat.3709
  21. Fedenko VS, Shemet SA, Guidi L, Landi M. Metal/metalloid-induced accumulation of phenolic compounds in plants. 67-116. In: Metal toxicity in higher plants. Eds by Landi M, Shemet SA, Fedenko VS. Nova Science Publishers; 2020.
  22. Ashour TH. Preventative effects of caffeic acid phenyl ester on cadmium intoxication induced hematological and blood coagulation disturbances and hepatorenal damage in rats. ISRN Hematol. 2014; 2014: 764754. https://www.ncbi.nlm.nih.gov/pubmed/25006475. https://www.ncbi.nlm.nih.gov/pmc/articles/4003892. https://doi.org/10.1155/2014/764754
  23. Kazantzis G. Cadmium, osteoporosis and calcium metabolism. Biometals. 2004; 17(5): 493-498. https://www.ncbi.nlm.nih.gov/pubmed/15688852. https://doi.org/10.1023/B:BIOM.0000045727.76054.f3
  24. Sughis M, Penders J, Haufroid V, Nemery B, Nawrot TS. Bone resorption and environmental exposure to cadmium in children: a cross-sectional study. Environ Health. 2011; 10(1): 1-6. https://www.ncbi.nlm.nih.gov/pubmed/22151692. https://www.ncbi.nlm.nih.gov/pmc/articles/3248365. https://doi.org/10.1186/1476-069X-10-104
  25. Ogoshi K, Moriyama T, Nanzai Y. Decrease in the mechanical strength of bones of rats administered cadmium. Arch Toxicol. 1983; 63(4): 320-324. https://www.ncbi.nlm.nih.gov/pubmed/2764720. https://doi.org/10.1007/BF00278646
  26. Brzóska MM. Low‐level chronic exposure to cadmium enhances the risk of long bone fractures: a study on a female rat model of human lifetime exposure. J Appl Toxicol. 2012; 32(1): 34-44. https://www.ncbi.nlm.nih.gov/pubmed/21264883. https://doi.org/10.1002/jat.1632
  27. Ou L, Wang H, Wu Z, Wang P, Yang L, Li X, et al. Effects of cadmium on osteoblast cell line: Exportin 1 accumulation, p-JNK activation, DNA damage and cell apoptosis. Ecotoxicol Environ Saf. 2021; 208: 111668. https://www.ncbi.nlm.nih.gov/pubmed/33396178. https://doi.org/10.1016/j.ecoenv.2020.111668
  28. Ma Y, Ran D, Shi X, Zhao H, Liu Z. Cadmium toxicity: A role in bone cell function and teeth development. Sci Total Environ. 2021; 2021: 144646. https://www.ncbi.nlm.nih.gov/pubmed/33485206. https://doi.org/10.1016/j.scitotenv.2020.144646
  29. He S, Zhuo L, Cao Y, Liu G, Zhao H, Song R, et al. Effect of cadmium on osteoclast differentiation during bone injury in female mice. Environ Toxicol. 2020; 35(4): 487-494. https://www.ncbi.nlm.nih.gov/pubmed/31793751. https://doi.org/10.1002/tox.22884
  30. Vanlaeys A, Fouquet G, Kischel P, Hague F, Pasco-Brassart S, Lefebvre T, et al. Cadmium exposure enhances cell migration and invasion through modulated TRPM7 channel expression. Arch Toxicol. 2020; 94(3): 735-747. https://www.ncbi.nlm.nih.gov/pubmed/32080757. https://doi.org/10.1007/s00204-020-02674-w
  31. WHO. Cadmium: environmental aspects. World Health Organization; 1992.
  32. Zoller H, Weiss G, Theurl I, Koch RO, Vogel W, Obrist P, et al. Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterol. 2001; 120(6): 1412-1419. https://www.ncbi.nlm.nih.gov/pubmed/11313311. https://doi.org/10.1053/gast.2001.24033
  33. Hill A, Gailer J. Linking molecular targets of Cd in the bloodstream to organ-based adverse health effects. J Inorg Biochem. 2020; 216: 111279. https://www.ncbi.nlm.nih.gov/pubmed/33413916. https://doi.org/10.1016/j.jinorgbio.2020.111279
  34. Horiguchi H, Oguma E, Kayama F. Cadmium induces anemia through interdependent progress of hemolysis, body iron accumulation, and insufficient erythropoietin production in rats. Toxicol Sci. 2011; 122(1): 198-210. https://www.ncbi.nlm.nih.gov/pubmed/21540277. https://doi.org/10.1093/toxsci/kfr100
  35. Arbi S, Oberholzer HM, Van Rooy MJ, Venter C, Bester MJ. Effects of chronic exposure to mercury and cadmium alone and in combination on the coagulation system of Sprague-Dawley rats. Ultrastruct Pathol. 2017; 41(4): 275-283. https://www.ncbi.nlm.nih.gov/pubmed/28617098. https://doi.org/10.1080/01913123.2017.1327909
  36. Koçak M, Akçıl E. The effects of chronic cadmium toxicity on the hemostatic system. Pathophysiol Haemost Thromb. 2006; 35(6): 411-416. https://www.ncbi.nlm.nih.gov/pubmed/17565233. https://doi.org/10.1159/000102047