ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 7 of 42
Up
JMBS 2020, 5(2): 58–63
https://doi.org/10.26693/jmbs05.02.058
Experimental Medicine

Morphometric Characteristics of the Albino Rats’ Small Intestine after Administration of Clarithromycin

Hryn V. H.
Abstract

The present study correlates with the relevant issues of contemporary medicine on the pathogenesis of dysbiosis associated with antibiotic therapy, although other factors of exogenous and endogenous nature can also be the cause of the microbiocenosis disorder in the host body. Dysbiosis can be caused by antibiotics, administered by any route, but its highest risk is when taken orally, since the drug enters directly into the intestine, affecting microflora. Numerous publications concern the clinical and microbiological aspects of dysbiosis associated with antibiotics and methods of their treatment. However, issues related to the morphological and functional state of structured formations of the immune system of the mucous membranes of the gastrointestinal tract are elucidated extremely insufficiently and contradictory, the most representative of which are Peyer’s patches. The purpose of the paper was to clarify the nature of the changes in the quantitative parameters of Peyer’s patches of the small intestine of albino rats after administration of a broad-spectrum antibiotic. Material and methods. 30 mature albino male rats with the weight 200.0±20.0 g were involved into the experiment. The broad-spectrum antibiotic (clarithromycin, 500 mg tablets, at a dose of 10 mg/kg) was administered to the rodents per os as a supplement to food during their two-meals-a-day feeding a day (morning and evening) for 10 days. Results and discussion. During and at the end of the administration of antibiotic as a supplement to the high-calorie foods no signs indicating the development of intestinal disorder in the form of diarrhea were noted in the experimental animals. No difference in the topographic distribution of Peyer’s patches in the wall of the small intestine of the experimental animals compared to controls was established. The total amount of Peyer’s patches after the effect of the antibiotic on the intestinal microflora remained unchanged. Thus, the effect of the antibiotic on the intestinal microflora does not influence the localization and the total amount of Peyer’s patches of the small intestine of albino rats. Conclusion. The obtained results showed that genetically programmed total amount of Peyer’s patches in the small intestine was constant, while the number of lymphoid nodules in them was variable, depending on situational changes in the intestinal microbiocenosis.

Keywords: albino rats, small intestine, Peyer’s patches, clarithromycin

Full text: PDF (Ukr) 205K

References
  1. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis. 2016; 22(5): 1137-50. https://doi.org/10.1097/MIB.0000000000000750
  2. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015; 26: 26191. https://doi.org/10.3402/mehd.v26.26191
  3. Hosseini JN, Shahabi SH. Gut Microbiota, Dysbiosis and Immune System; A Brief Review. International Journal of Research in Applied and Basic Medical Sciences. 2019; 5(2): 77-81.
  4. Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 2017; 4: 14. PMCID: PMC5408367. https://doi.org/10.1186/s40779-017-0122-9
  5. Levy M, Kolodziejczyk A, Thaiss C, Elinav E. Dysbiosis and the immune system. Nature Reviews Immunology. 2017; 17(4): 219-32. https://doi.org/10.1038/nri.2017.7
  6. Gagliardi A, Totino V, Cacciotti F, Iebba V, Neroni B, Bonfiglio G, et al. Rebuilding the Gut Microbiota Ecosystem. Int J Environ Res Public Health. 2018; 15(8): 1679. https://doi.org/10.3390/ijerph15081679
  7. Kho ZY, Lal SK. The Human Gut Microbiome - A Potential Controller of Wellness and Disease. Front Microbiol. 2018; 9: 1835. https://doi.org/10.3389/fmicb.2018.01835
  8. Yuji N, Akifumi F, Saori K, Tomohisa T. Gut Dysbiosis and Its Treatment in Patients with Functional Dyspepsia: Evidences in Pathophysiology and Treatment. 2018; 08: 155-66. https://doi.org/10.1007/978-981-13-1074-4_14.
  9. Shevchenko TM, Rozhnyeva IL, Dyklenko TV, Voronkova OS. Comparative characteristics of the composition of microbial associations of the gastrointestinal tract in humans in the norm and during dysbiosis. Regulatory Mechanisms in Biosystems. 2017; 8(4): 497-500. https://doi.org/10.15421/021776
  10. Huseynov TS, Huseynova ST. Diskussionnyye voprosy anatomii peyyerovykh blyashek tonkoy kishki. Saratovskiy nauchno-meditsinskiy zhurnal. 2012; 8(3): 687-91. [Russian]
  11. Kashchenko SA, Tkacheva YeN. Morfometricheskiye parametry limfoidnykh obrazovaniy tonkoy kishki krys v vozrastnom aspekte. Morfologíya. 2009; 4(3): 25-8. [Russian]
  12. Morozova YeN. Mikroskopicheskoye stroyeniye peyyerovykh blyashek tonkoy kishki intaktnykh krys raznykh porod. Ukraí̈ns'kiy morfologíchniy al'manakh. 2014; 12(1): 117-22.
  13. Hryn VH, Kostylenko YP, Bilash VP, Ryabushko OB. Microscopic structure of albino rats’ small intestine. Wiadomości Lekarskie. 2019; 72(5 cz 1): 733-8. PMID: 31175762
  14. Hryn VH, Kostylenko YuP. Strukturna orhanizatsiya kyshkovykh krypt peyyerovykh blyashok tonkoyi kyshky bilykh shchuriv. Morfologiya. 2019; 13(3): 32-9. [Russian]. https://doi.org/10.26641/1997-9665.2019.3.32-39
  15. Hryn VH. Zahalʹnyy pryntsyp budovy limfoyidnykh vuzlykiv u skladi peyyerovykh blyashok tonkoyi kyshky bilykh shchuriv. Visnyk problem biolohiyi i medytsyny. 2019; 2(151): 200-4. [Ukrainian]. https://doi.org/10.29254/2077-4214-2019-2-2-151-200-204
  16. Hryn VH. Planimetric correlations between Peyer's patches and the area of small intestine of white rats. Reports of morphology. 2018; 2(24): 66-72. https://doi.org/10.31393/morphology-journal-2018-24(2)-10
  17. Hryn VH, Kostylenko YuP, Korchan NO, Lavrenko DO. Strukturnyye formy follikul-assotsiirovannogo epiteliya peyyerovykh blyashek tonkoy kishki belykh krys. Georgian medical news. 2019; 9(294): 118-23. [Russian]
  18. Gromova LV, Borshchov YuYu, Yermolenko YeI, Grefner NM, Alekseyeva AS, Voyeykova AV, i dr. Deystviye antimikrobnykh preparatov na kishechnyye pishchevaritel'nyye fermenty u krys. Vestnik Sankt-Peterburgskogo universiteta. Seriya 11, Meditsina. 2012; 3: 161-70. [Russian]
  19. Yaguchi Y, Fukatsu K, Moriya T, Maeshima Y, Ikezawa F, Omata J, et al. Influences of Long-Term Antibiotic Administration on Peyer's Patch Lymphocytes and Mucosal Immunoglobulin A Levels in a Mouse Model. JPEN. Journal of parenteral and enteral nutrition. 2006; 30(5): 395-8; discussion 399. https://doi.org/10.1177/0148607106030005395
  20. Kiseleva YeP. Aktseptivnyy immunitet – osnova simbioticheskikh vzaimootnosheniy. Infektsiya i immunitet. 2015; 5(2): 113-30. [Russian]
  21. Directive 2010/63 / EU of the European Parliament and of the Council of the European Union on the protection of animals used for scientific purposes, complying with the requirements of the European Economic Area. St. Petersburg. Official Journal of the European Union. 20.10.2010; 276: 33‒79.
  22. Nakaz № 249 Ministerstva osvity i nauky, molodi ta sportu Ukrayiny vid 01.03.2012 r. «Pro zatverdzhennya poryadku provedennya naukovymy ustanovamy doslidiv, eksperymentiv na tvarynakh». Ofitsiynyy visnyk Ukrayiny. 2012 Apr 06; 24: 82. [Ukrainian]
  23. Rybakova AV, Makarova MN. Sanitarnyy kontrol' eksperimental'nykh klinik (vivariyev) v sootvetstvii s lokal'nymi i mezhdunarodnymi trebovaniyami. Mezhdunarodnyy vestnik veterinarii. 2015; 4: 81-9. [Russian]
  24. Antibiotiki i antimikrobnaya terapiya. Antibiotic.ru [digital resource]. Available from: http://www.antibiotic.ru/books/macrolid/mcld08.shtml [Russian]
  25. Piminov AF, Kuznetsova VM, Suprun EV. Antibiotik-assotsiirovannaya diareya. Pharmacy online.ua. [digital resource]. 2012; 38(859). Available from: https://www.apteka.ua/article/163162 [Russian]
  26. Makarenko IE, Avdeeva OI, Vanatiev GV, Rybakova AV, Khodko SV, Makarova MN, i dr. Vozmozhnyye puti i obyemy vvedeniya lekarstvennykh sredstv laboratornym zhivotnym. Mezhdunarodnyy vestnik veterinarii. 2013; 3: 78-84. [Russian]
  27. Ismagilova AF, Chudov IV. Massa, mera dozirovaniya lekarstvennykh sredstv. Veterinarnaya i klinicheskaya farmakologiya, toksikologiya. Ufa; 2011, 20 s. [Russian]
  28. Vasyutina ML, Smirnova SV. Sravnitel'nyy analiz preparatov, ispol'zuyemykh dlya obshchey anestezii u krys. Vestnik novgorodskogo gosudarstvennogo universiteta. 2015; 86(1): 41-3. [Russian]
  29. Kiselev AP. Geometriya (Planimetriya i Stereometriya). M: Fizmatlit; 2014. 328 s. [Russian]
  30. Tsikunov AYe. Sbornik formul po matematike. SPb; 2017. 160 s. [Russian]
  31. Lapach SN, Chubenko AV, Babych PN. Statystycheskye metody v medyko-byologycheskykh yssledovanyyakh s yspolzovanyem Excel. K: MORYON; 2001. 408 s. [Russian]
  32. Morozova EN. Morfolohycheskye osobennosty peyerovykh blyashek tonkoy kyshky yntaktnykh krys. Visnyk problem biolohiyi i medytsyny. 2014; 1(1): 265-68. [Russian]
  33. Onori P, Franchitto A, Sferra R, Vetuschi A, Gaudio E. Peyer's patches epithelium in the rat: a morphological, immunohistochemical, and morphometrical study. Digestive diseases and sciences. 2001; 46: 1095-104. PMID: 11341655. https://doi.org/10.1023/a:1010778532240