ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 57 of 61
Up
JMBS 2019, 4(5): 366–375
https://doi.org/10.26693/jmbs04.05.366
Physical training and Sport. Medical and biological aspects of training athletes

Indicators of the Acid-Basic Condition of the Blood at the Representatives of Different Types of Sport

Vinnichuk Yu. D. 1, Bezuglaya V. V. 2
Abstract

It is really important to control the parameters of the blood acid-base balance in the practice of sports. Changes in the blood acid-base balance during training loads allowed considering the metabolic response and the adaptive capabilities of the body. Information about these indicators in terms of muscular activity is well studied, but their condition with muscular rest (pre-exercise) is still the subject for discussion. The purpose of this study was to investigate the blood acid-base balance parameters, as well as relationship with the biochemical homeostasis parameters and the state of the cardiovascular system in athletes of various sports before exercise. Material and methods. The study involved of 78 skilled athletes, members of national teams of Ukraine (cyclic sports (n=42) – cycle racing, canoeing, swimming; difficult coordination sports (n=26) – rhythmic gymnastics, diving; martial arts (n=10) – judo). All athletes were after twenty-four hours of relaxation, without diseases and traumas. The study of indicators of the venous blood acid-base status (pH, carbon dioxide pressure (pCO2), oxygen pressure (pO2), bicarbonate concentration (НСО3-), base excess (BE), and the total bicarbonate (tCO2) was carried on blood gas and electrolyte analyzer «Osmetech OPTI CCA» (Human Ltd., Germany). Electrocardiographic study was performed using the multifunctional diagnostic complex «CardioPlus» (Metekol, Ukraine). The biochemical markers (indicators of lipid, carbohydrate, protein and mineral metabolism, metabolic regulators were studied on the semiautomatic biochemical analyzer «HUMALYZER 3000» (Human Ltd., Germany). Results and discussion. The average group pH of venous blood 95.2% of athletes were within reference values. The athletes who specialize in rhythmic gymnastics, rowing and canoeing, swimming, cycling and judo showed changes in blood acid-base balance characteristic of pre-exercise respiratory acidosis, offset by metabolic alkalosis ( НСО3-,  BE). The highest values of the average group BE, HCO3-, tCO2 noted in swimmers (14.12±4.78 mmoll-1, (41.48±4.72 mmoll-1, 43.27±3.84 mmoll-1) and cycle racing (9.28±1.92 mmoll-1, 36.74±1.81 mmoll-1, 38.55±1.84 mmoll-1, respectively), which indicate the high power of the body buffer systems. None of the athlete showed pre-training metabolic acidosis, which was considered an early sign of fatigue. The association of BE and HCO3- values with the muscle damage (microtrauma muscles) in swimming athletes, was also observed. Conclusions. Results of this study can be used in the planning preventative measures, the formation of individual training process, the early diagnosis of the acid-base balance disturbance in the sports organism.

Keywords: sport, acid-base balance, biochemical homeostasis, electrocardiography

Full text: PDF (Rus) 249K

References
  1. Abramochkina ND, Solov'ev VB, Gengin MT, et al. Kislotno-osnovnye pokazateli krovi sportsmenov razlichnyh kvalifikacionnyh grupp v norme i pri fizicheskoj nagruzke. Vestnik Penzenskogo gosudarstvennogo universiteta. 2015; 4(12): 85–90. [Russian]
  2. Ado AD, Ado MA, Pyckij VI, Porjadin GV, Vladimirov JuA. Patologicheskaja fiziologija. M: Triada-H; 2000. 607 p. [Russian]
  3. Bykov EV. Fiziologija fizicheskogo vospitanija i sporta: uchebnoe posobie. Cheljabinsk: Izd-vo JuUrGU; 2007. 131 p. [Russian]
  4. Bukova LM, Krovjakov VF. Issledovanie vlijanija parametrov funkcional'nogo sostojanija organizma na jeffektivnost' igrovogo vzaimodejstvija junyh basketbolistok. Uchenye zapiski Tavricheskogo nacional'nogo universiteta im. V.I. Vernadskogo serija «Biologija». 2013; 16(55): 28–31. [Russian]
  5. Volkov NI, Nesen ЄN, Osipenko AA, Korsun SN. Biohimija myshechnoj dejatel'nosti. K: Olimpijskaja Literatura; 2000. 503 p. [Russian]
  6. Gorbaneva EP, Lagutina MV. Fiziologicheskie osnovy slozhnokoordinacionnyh vidov sporta: uchebno-metodicheskoe posobie. Volgograd: FGBOU VPO «VGAFK»; 2012. 76 p. [Russian]
  7. Gunina LM, Vinnichuk JuD, Nosach E.V. Biohimicheskie markery utomlenija pri fizicheskoj nagruzke: metod rekomendacii. K: Olimpijskaja Literatura; 2013. 36 p. [Russian]
  8. Drandrov GL, Kuprijanov SV. Sistemno-funkcional'naja diagnostika sdvigov kislotno-osnovnogo sostojanija, ee klinicheskoe ispol'zovanie. Jelektronnyj sbornik nauchnyh trudov "Zdorov'e i obrazovanie v XXI Veke". 2011; 13(10): 493–4. [Russian]
  9. Kalinin MV. Problema gomeostaza v sporte: kislotno-osnovnoe sostojanie krovi pri adaptacii k myshechnoj dejatel'nosti. Teorija i praktika fizicheskoj kul'tury. 1996; 1996: 20–4. [Russian]
  10. Kulinenkov DO, Kulinenkov OS. Spravochnik po farmakologii sporta. Lekarstvennye preparaty sporta: spravochnoe posobie 4-e izd, pererab i dop. M: Sovetskij sport; 2012. 464 p. [Russian]
  11. Landyr' AP, Achkasov EE. Monitoring chastoty serdechnyh sokrashhenij v upravlenii trenirovochnyi processom v fizicheskoj kul'ture i sporte. M: Sport; 2018. 240 p. [Russian]
  12. Litvickij PF. Narushenija kislotno-osnovnogo sostojanija. Voprosy sovremennoj pediatrii. 2011; 10(1): 83–92. [Russian]
  13. Litvickij PF. Narushenija kislotno-osnovnogo sostojanija. Voprosy sovremennoj pediatrii. 2011; 10(2): 28–39. [Russian]
  14. Matishev AA, Makarova GA, Loktev SA, Chernuha SM. Faktory riska i mery profilaktiki travmatizacii oporno-dvigatel'nogo apparata u junyh legkoatletov. M: Sport; 2018. 128 p. [Russian]
  15. Medicinskaja reabilitacija: uchebnik dlja studentov i vrachej. Pod obshh red Sokruta VN, Jabluchanskogo NI. Slavjansk: «Vash imidzh»; 2015. 576 р. [Russian]
  16. Morrison VV, Chesnokova NP, Bizenkova M.N. Kislotno-osnovnoe sostojanie. Tipovye narushenija kislotno-osnovnogo sostojanija (lekcija 2). Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2015; 3: 273–8. [Russian]
  17. Nikulin BA, Rodionova II. Biohimicheskij kontrol' v sporte: nauch-metod posobie. M: Sovetskij sport; 2011. 232 р. [Russian]
  18. Nehvjadovich AI, Nehaj EV, Asipovskaja TS. Avtomatizirovannaja sistema «Biohim-jekspert» kak unificirovannyj metod biohimicheskoj ocenki fizicheskoj i funkcional'noj podgotovlennosti sportsmenov vysokoj kvalifikacii: prakticheskoe posobie. Minsk: RNPC sporta; 2016. 64 р. [Russian]
  19. Petrushova OP, Mikuljak NI. Kislotno-osnovnoe ravnovesie krovi sportsmenov. Biomedicinskaja himija. 2014; 60(5): 591–5. [Russian] https://doi.org/10.18097/pbmc20146005591
  20. Solomina TV. Biohimija obmennyh processov. Uchebnoe posobie dlja studentov institutov i fakul'tetov fizicheskoj kul'tury. Cheljabinsk; 1999. 132 р. [Russian]
  21. Stadzher DzhM, Kojl MA. Jenergeticheskoe obespechenie dvigatel'noj aktivnosti plovcov. Sportivna medicina. 2005; 2: 22–40. [Russian]
  22. Tepaev RF, Lastovka VA, Pytal' AV, Savluk JuV. Metabolicheskij acidoz: diagnostika i lechenie. Pediatricheskaja farmakologija. 2016; 13(4): 384–9. [Russian] https://doi.org/10.15690/pf.v13i4.1612
  23. Fudin NA, Es'kov VM, Filatova OE, et al. Vlijanie razlichnyh vidov sporta na dejatel'nost' funkcional'nyh sistem organizma cheloveka. Vestnik novyh medicinskih tehnologij. Jelektronnoe izdanie. 2015; 1: Publikacija 2-1. [Internet]. Available from: http://www.medtsu.tula.ru/VNMT/Bulletin/E2015-1/5063.pdf [Russian]
  24. Fundin NA, Hadarcev AA, Orlov VA. Mediko-biologicheskie tehnologii v fizicheskoj kul'ture i sporte. M: Sport, Chelovek; 2018. 320 p. [Russian]
  25. Chernec MI, Potapov AV. Vlijanie nyrjanija v dlinu s zaderzhkoj dyhanija na kislotno-osnovnoe sostojanie krovi. Voenno-medicinskij zhurnal. 1998; 8: 53–4. [Russian]
  26. Jakovlev NN. Biohimija sporta. M: Fizkul'tura i sport; 1974. 288 p. [Russian]
  27. Applegate C, Mueller M, Zuniga K. Influence of dietary acid load on exercise performance. International journal of sport nutrition and exercise metabolism. 2017; 27(3): 213–9. https://www.ncbi.nlm.nih.gov/pubmed/28050921. https://doi.org/10.1123/ijsnem.2016-0186
  28. Corrado D, Calore C, Zorzi A, Migliore F. Improving the interpretation of the athlete’s electrocardiogram. Eur Heart J. 2013; 34(47): 3606–9. https://www.ncbi.nlm.nih.gov/pubmed/24179074. https://doi.org/10.1093/eurheartj/eht458
  29. Drezner J, Ackerman M, Anderson J, Ashley E, Asplund CA, Baggish AL, et al. Electrocardiographic interpretation in athletes: the ‘Seattle Criteria’. British journal of sports medicine. 2013; 47(3): 122–4. https://www.ncbi.nlm.nih.gov/pubmed/23303758. https://doi.org/10.1136/bjsports-2012-092067
  30. Frangiosa A, De Santo L, Anastasio P, De Santo NG. Acid-base balance in heart failure. Journal of Nephrology. 2006; 19(Suppl 9): S115-20. https://www.ncbi.nlm.nih.gov/pubmed/16736434
  31. Hochachka PW. Biochemical adaptation – mechanism and process in physiological evolution. New York: Oxford University Press; 2001; 65 p.
  32. Khanna A, Kurtzman N. Metabolic alkalosis. Journal of Nephrology. 2006; 19(Suppl 9): S86–96. https://www.ncbi.nlm.nih.gov/pubmed/16736446
  33. Medbø JL, Sejersted OM. Acid-base and electrolyte balance after exhausting exercise in endurance-trained and sprint-trained subjects. Acta Physiologica Scandinavica. 1985; 125(1): 97–109. https://www.ncbi.nlm.nih.gov/pubmed/4050490. https://doi.org/10.1111/j.1748-1716.1985.tb07696.x
  34. Russell M, Kingsley M. Changes in acid-base balance during simulated soccer match play. Journal of Strength and Conditioning Research. 2012; 26(9): 2593–9. https://www.ncbi.nlm.nih.gov/pubmed/22067253. https://doi.org/10.1519/JSC.0b013e31823f284e
  35. Sharma S, Drezner J, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International recommendations for electrocardiographic interpretation in atletes. European Heart Journal. 2018; 36(16): 1466–80. https://www.ncbi.nlm.nih.gov/pubmed/28329355. https://doi.org/10.1093/eurheartj/ehw631
  36. Siegler JC, McNaughton LR, Midgley AW, Keatley S, Hillman A. Metabolic alkalosis, recovery and sprint performance. International journal of sports medicine. 2010; 31(11): 797–802. https://www.ncbi.nlm.nih.gov/pubmed/20703975. https://doi.org/10.1055/s-0030-1261943
  37. Thomas C, Delfour-Peyrethon R, Bishop D, Perrey S, Leprêtre PM, Dorel S, et al. Effects of pre-exercise alkalosis on the decrease in VO2 at the end of all-out exercise. European Journal of Applied Physiology. 2016; 116(1): 85–95. https://www.ncbi.nlm.nih.gov/pubmed/26297325. https://doi.org/10.1007/s00421-015-3239-0
  38. Wasserman K, Stringer W, Casaburi R, Koike A, Cooper CB. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects. Zeitschrift für Kardiologie. 1994; 83(Suppl 3): 1–12. https://www.ncbi.nlm.nih.gov/pubmed/7941654
  39. Zabala M, Peinado A, Calderón F, Sampedro J, Castillo MJ, Benito PJ. Bicarbonate ingestion has no ergogenic effect on consecutive all out sprint tests in BMX elite cyclists. European Journal of Applied Physiology. 2011; 111(12): 3127–34. https://www.ncbi.nlm.nih.gov/pubmed/21465247. https://doi.org/10.1007/s00421-011-1938-8