ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 7 of 45
Up
УЖМБС 2021, 6(6): 66–73
https://doi.org/10.26693/jmbs06.06.066
Experimental Medicine and Morphology

Study of Correction of Somatic Pain under the Conditions of Experimental Pathology of Multiple Sclerosis

Nefodov O. O., Myasoed Yu. P., Solomenko M. V., Velikorodna-Tanasiychuk O. V., Baklunov V. V., Adegova L. Ya., Chirkin V. I., Malchugin R. K.
Abstract

The purpose of the study was to experimentally substantiate the ways of pharmacological correction of somatic pain syndrome in conditions of the experimental equivalent of multiple sclerosis through a comparative system analysis and the use of complex methodological approaches. Materials and methods. To study multiple sclerosis, we used an experimental model with autoimmune mechanisms of inflammatory demyelination – a model of experimental allergic encephalomyelitis. To assess the antinociceptive activity of painkillers, we used the method of electrical stimulation of the rats’ tail root. The activity of the enzyme prostaglandin H-synthetase was also determined. Results and discussion. A comparative analysis of the analgesic activity indicators of combinations of methylprednisolone with analgesics under the condition of the formed experimental allergic encephalomyelitis showed that their antinociceptive potential (taking into account the basic therapy with methylprednisolone) decreased in the series meloxicam > lornoxicam ≈ ketorolac ≈ paracetamol > celecofenacoxib ≈ sodium diclofupene ≈ diclofupene ≈ diclofupene. Accordingly, the maximum effect on the threshold of nociception under these experimental conditions was exerted by meloxicam and lornoxicam. The combined administration of methylprednisolone with diclofenac sodium, celecoxib and meloxicam reduced the activity of prostaglandin N-synthetase in the brain structures by 49.8% (p <0.05), 50.4% (p <0.05) and 51% (p <0.05), respectively, compared with the indicators of the control group. The same drugs markedly reduced the activity of prostaglandin N-synthetase in the spinal cord by 23.9% (p <0.05) (Methylprednisolone + diclofenac), by 34% (p <0.05) (Methylprednisolone + celecoxib) and by 47.4% (p <0.05) (Methylprednisolone + meloxicam) compared with the control group. Our analysis of the analgesic activity of antidepressants and anticonvulsants as means of correcting nociceptive pain in experimental allergic encephalomyelitis found that their antinociceptive potential was inferior to the severity of the analgesic effect of nonsteroidal anti-inflammatory drugs. Conclusion. Among the studied non-steroidal anti-inflammatory drugs, antidepressants and anticonvulsants, the maximum therapeutic efficacy as a means of correcting nociceptive pain in experimental allergic encephalomyelitis against the background of basic methylprednisolone therapy was shown by meloxicam, which gives grounds to recommend it as the analgesic of choice for eliminating somatic pain syndromes

Keywords: multiple sclerosis, experimental allergic encephalomyelitis, somatic pain, nonsteroidal anti-inflammatory drugs

Full text: PDF (Ukr) 304K

References
  1. Kim JA, Bosma RL, Hemington KS, Rogachov A, Osborne NR, Cheng JC, et al. Cross-network coupling of neural oscillations in the dynamic pain connectome reflects chronic neuropathic pain in multiple sclerosis. Neuroimage Clin. 2020;26:102230. PMID: 32143136. PMCID: PMC7056723. https://doi.org/10.1016/j.nicl.2020.102230
  2. Sedal L, Winkel A, Laing J, Law LY, McDonald E. Current concepts in multiple sclerosis therapy. Degener Neurol Neuromuscul Dis. 2017;7:109–125. PMID: 30050382. PMCID: PMC6053095. https://doi.org/10.2147/DNND.S109251
  3. Xu Z, Wu J, Zheng J. Design, synthesis and evaluation of a series of non-steroidal anti-inflammatory drug conjugates as novel neuroinflammatory inhibitors. Int Immunopharmacol. 2015;25(2):528-537. PMID: 25765352. https://doi.org/10.1016/j.intimp.2015.02.033
  4. Nefodov AA, Belenichev IF, Nefodova EA, Bukhtiyarova NV, Levich SV, Dronov SN. Neuroprotective effect of citicoline and glucocorticosteroid combination under conditions of experimental demyelinating model of central nervous system. J Neurobehav Sci. 2018;3:131-136. https://doi.org/10.5455/JNBS.1525619232
  5. Nefedov AA, Mamchur VI. Primenenie citikolina dlya korrekcii ultrastrukturnyh izmenenij CNS, inducirovannyh eksperimentalnym allergicheskim encefalomielitom [The use of citicoline for the correction of ultrastructural changes in the central nervous system induced by experimental allergic encephalomyelitis]. Visnyk problem biolohii i medytsyny; 2016:2(129):235-240. [Russian]
  6. Rahmanzadeh R, Lu PJ, Barakovic M, Weigel M, Maggi P, Nguyen TD, et al. Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging. Brain. 2021;144(6):1684–1696. PMID: 33693571. PMCID: PMC8374972. https://doi.org/ 10.1093/brain/awab088
  7. Zahoor I, Rui B, Khan J, Datta I, Giri S. An emerging potential of metabolomics in multiple sclerosis: a comprehensive overview. Cell Mol Life Sci. 2021;78(7):3181–3203. PMID: 33449145. PMCID: PMC8038957. https://doi.org/ 10.1007/s00018-020-03733-2
  8. Halicka M, Vittersø AD, Proulx MJ, Bultitude JH. Pain reduction by inducing sensory-motor adaptation in Complex Regional Pain Syndrome (CRPS PRISMA): protocol for a double-blind randomized controlled trial BMC Neurol. 2020;20:62. PMID: 32075590. PMCID: PMC7031894. https://doi.org/10.1186/s12883-020-1604-z
  9. Nefodov OO, Mamchur VY. Eksperimentalniy alergichniy entsefalomielit: osoblivosti znebolyuyuchoyi terapiyi ta mistse antikonvulsantiv u yakosti analgetikiv [Experimental allergic encephalomyelitis: features of analgesic therapy and the place of anticonvulsants as analgesics]. Medichni perspektivi. 2015;4:4-10. [Ukrainian]. https://doi.org/10.26641/2307-0404.2015.4.56125
  10. Groppa S, Gonzalez-Escamilla G, Eshaghi A, Meuth SG, Ciccarelli O. Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help? Brain Commun. 2021;3(4):fcab237. PMID: 34729480. PMCID: PMC8557667. https://doi.org/10.1093/braincomms/fcab237
  11. Lakin L, Davis BE, Binns CC, Currie KM, Rensel MR. Comprehensive Approach to Management of Multiple Sclerosis: Addressing Invisible Symptoms—A Narrative Review Neurol Ther. 2021 Jun;10(1):75–98. PMID: 33877583 . PMCID: PMC8057008. https://doi.org/10.1007/s40120-021-00239-2
  12. Magyari M, Joensen H, Laursen B, Koch-Henriksen N. The Danish Multiple Sclerosis Registry Brain Behav. 2021 Jan; 11(1): e01921. PMID: 33128351. PMCID: PMC7821574. https://doi.org/10.1002/brb3.1921
  13. Zapadnyuk IP, Zapadnyuk VI, Zahariya EA. Laboratornye zhivotnye. Razvedenie, soderzhanie, ispolzovanie v eksperimente [Laboratory animals. Breeding, maintenance, use in the experiment]. К: «Vischa shkola»; 1983. 383 p. [Russian]
  14. Kozhem’yakin YuM, Hromov OS, Filonenko MA, et al. Naukovo-praktichni rekomendatsiyi z utrimannya laboratornih tvarin ta robot i z nimi [Scientific and practical recommendations for keeping laboratory animals and robots and with them]. К; 2002. 155 p. [Ukrainian]
  15. Davydova GS, Markov DA. Voprosy napravlennogo modelirovaniya allergicheskogo encefalomielita [Issues of directed modeling of allergic encephalomyelitis]. Demieliniziruyushie zabolevaniya nervnoj sistemy v eksperimente i klinike. Minsk: «Nauka i tehnika»; 1975. s. 24-33. [Russian]
  16. Davydova GS. Primenenie ayuvanta s razlichnym kolichestvom BCZh dlya vosproizvedeniya EAE u krys [The use of an adjuvant with different colic BCG for the reproduction of EAE in rats]. Ostryj encefalomielit v eksperimente i klinike. Minsk: «Nauka i tehnika»; 1969. s. 58-63. [Russian]
  17. Davydova GS, Markov DS. Hronicheskij eksperimentalnyj allergicheskij encefalomielita morskih svinok [Chronic experimental allergic encephalomyelitis of guinea pigs]. Demieliniziruyushie zabolevaniya nervnoj sistemy v eksperimente i klinike. Minsk: «Nauka i tehnika»; 1970. s. 193-206. [Russian]
  18. Mihajlov VA, Ignatov YuD. Bolevoj sindrom [Pain syndrome]. Leningrad: Medicina; 1990. 336 p. [Russian]
  19. D’Amour FE, Smith DL. A method for determining loss of pain sensation. J Pharmacol Exp Ther. 1941;72:74-79.
  20. Eddy NB, Leimbach D. Synthetic Analgesics: Dithienylbutenyl and dithienylbutylamines. J Pharmacol Exp Ther. 1953;107:385-389.
  21. Danilova LA. Spravochnik po laboratornym metodam issledovaniya [Laboratory Research Methods Handbook]. SPb: Piter; 2003. 736 p. [Russian]
  22. Halliwell B. Molecular Biology of free Radicals in Human Diseases. London - St Lucia: OICA; 1999. 410 p.
  23. Strokin ML, Sergeeva MG, Mevh AT, Varfolomeev SD. Eksperimentalnoe vklyuchenie arahidonovoj kisloty v makrofagi [Experimental incorporation of arachidonic acid into macrophages]. Biohimiya. 2001;66(3):386-393. [Russian]
  24. Burch JW, Stanford N, Majerus PW. Inhibition of platelet prostaglandin synthetase by oral aspirin. J Clin Invest. 1978;61:314-319. PMID: 413839. PMCID: PMC372541. https://doi.org/10.1172/JCI108941
  25. Lapach SN, Chubenko AV, Babich PN. Statisticheskie metody v mediko-biologicheskih issledovaniyah s ispolzovaniem EXCEL [Statistical Methods in Life Sciences Research Using EXCEL]. К: «Morion»; 2001. 408 p. [Russian]
  26. Kratz AL, Whibley D, Alschuler KN, Ehde DM, Williams DA, Clauw DJ, et al. Characterizing chronic pain phenotypes in multiple sclerosis: a nationwide survey study. Pain. 2021; 162(5): 1426–1433. PMID: 33196577. PMCID: PMC8054538. https://doi.org/10.1097/j.pain.0000000000002136