ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 6 of 45
Up
УЖМБС 2021, 6(6): 57–65
https://doi.org/10.26693/jmbs06.06.057
Experimental Medicine and Morphology

Efficiency of Experimental Allergic Encephalomyelitis Modeling as an Experimental Model of Multiple Sclerosis

Nefodov O. O., Miasoied Yu. P., Solomenko M. V., Velykorodna-Tanasiichuk O. V., Baklunov V. V., Adehova L. Ya., Chіrkіn V. I., Demidenko Yu. V.
Abstract

The purpose of the study was the most adequate modeling of multiple sclerosis in the form of autoimmune allergic encephalomyelitis for further use in the study of experimental equivalents of neurodegenerative conditions. Materials and methods. The article highlights the results of the formation of experimental allergic encephalomyelitis, for the induction of which homologous brain homogenates were used, which in terms of encephalitogenicity ranks first among other drugs (homologous, heterogeneous brain and spinal cord homogenates). An encephalitogenic mixture was injected into the connective tissue of the base of the animal's tail at the rate of 0.1 ml per 100 g of body weight. Results and discussion. Experimental allergic encephalomyelitis reproducible by intradermal administration of a homogenate of the brain, spinal cord and peripheral nerves with a Freund's stimulator belongs to a true autoimmune disease of the nervous system and is an experimentally reproducible model of multiple sclerosis. According to the experimental data obtained, the state of the animals showed that the rats of the experimental group lost body weight, had a number of pathological neurological symptoms, which manifested on average from 10-12 days. The increase in symptoms continued for an average of 7 days and was not very stable. Experimental animals had paresis, manifestations of ataxia, walking disorders and urinary and fecal incontinence, lethargy, which corresponded to 1-2 degrees of the rating scale in 13 animals. In 7 rats, paresis of the hind limbs and loss of tail tone were expressed (grade 3). Most of the rats recovered spontaneously within 6-8 days after the onset of clinical manifestations (18-20 days after immunization). According to the requirements of the experiment, during the paralytic stage, the rats had free access to food and water. In addition, our experimental studies on the formation of experimental allergic encephalomyelitis were confirmed morphologically using electron microscopy. Conclusion. The use of this technique for the formation of experimental allergic encephalomyelitis made it possible to obtain a simulated pathological state of multiple sclerosis in the form of experimental allergic encephalomyelitis and can be used in further studies to identify the corresponding patterns, the degree and nature of changes in the immune and nervous systems of the body during the reproduction of an experimental pathological state. The data obtained can serve as a basis for further studies of drugs and their combinations in order to improve and rationalize the pharmacotherapy of multiple sclerosis

Keywords: multiple sclerosis, experimental allergic encephalomyelitis, experimental equivalent of multiple sclerosis

Full text: PDF (Ukr) 367K

References
  1. Nefodov OO, Mamchur VY. Eksperimentalniy alergichniy entsefalomielit: osoblivosti znebolyuyuchoyi terapiyi ta mistse antikonvulsantiv u yakosti analgetikiv [Experimental allergic encephalomyelitis: features of analgesic therapy and the place of anticonvulsants as analgesics]. Medichni perspektivi. 2015;4:4-10. [Ukrainian]. https://doi.org/10.26641/2307-0404.2015.4.56125
  2. Nefedov AA, Mamchur VI. Pharmacological Correction of Neurological Disorders in Case of Multiple Sclerosis. Galician Medical Journal. 2015;22(4):39-41.
  3. Zeydan B, Atkinson EJ, Weis DM, Smith CY, Rocca LG, Rocca WA, et al. Reproductive history and progressive multiple sclerosis risk in women. Brain Commun. 2020;2(2):185. PMID: 33409489. PMCID: PMC7772117. https://doi.org/10.1093/braincomms/fcaa185
  4. Granziera C, Wuerfel J, Barkhof F, Calabrese M, De Stefano N, Enzinger Ch, et al. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain. 2021;144(5):1296–1311. PMID: 33970206. PMCID: PMC8219362. https://doi.org/10.1093/brain/awab029
  5. Chung KK, Altmann D, Barkhof F, Miszkiel K, Brex PA, O'Riordan J, et al. A 30‐Year Clinical and Magnetic Resonance Imaging Observational Study of Multiple Sclerosis and Clinically Isolated Syndromes Ann Neurol. 2020;87(1):63–74. PMID: 31693200 . PMCID: PMC6973080. https://doi.org/10.1002/ana.25637
  6. Rahmanzadeh R, Lu PJ, Barakovic M, Weigel M, Maggi P, Nguyen ThD, et al. Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging. Brain. 2021;144(6):1684–1696. PMID: 33693571. PMCID: PMC8374972. https://doi.org/10.1093/brain/awab088
  7. Zahoor I, Rui B, Khan J, Datta I, Giri Sh. An emerging potential of metabolomics in multiple sclerosis: a comprehensive overview. Cell Mol Life Sci. 2021;78(7):3181–3203. PMID: 33449145. PMCID: PMC8038957. https://doi.org/10.1007/s00018-020-03733-2
  8. Nefedov AA. Ocenka effektivnosti nejroprotektivnoj terapii eksperimentalnogo allergicheskogo encefalomielita v usloviyah bazovoj terapii solu-medrolom [Evaluation of the effectiveness of neuroprotective therapy of experimental allergic encephalomyelitis in the conditions of basic therapy with solu-medrol]. Biomed Biosocial Antropol. 2015;24:65-70. [Russian]
  9. Weakley BS. Spravochnik dlya nachinayushih po biologicheskoj elektronnoj mikroskopii [A beginner’s handbook in biological electron microscopy]. M: «Mir»; 1975. 336 p. [Russian]
  10. Soelberg Sorensen P. Safety concerns and risk management of multiple sclerosis therapies. Acta Neurol Scand. 2017;136:168–186. PMID: 27891572. https://doi.org/10.1111/ane.12712
  11. Hasselmann JPC, Karim H, Khalaj AJ, Ghosh S, Tiwari-Woodruff SK. Consistent induction of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice for the longitudinal study of pathology and repair. J Neurosci Methods. 2017;284:71–84. PMID: 28396177. PMCID: PMC5749979. https://doi.org/10.1016/j.jneumeth.2017.04.003
  12. Nefedov AA, Mamchur VJ, Tverdohleb IV. Osobennosti ultrastruktury frontalnoj kory i gippokampa krys v usloviyah eksperimentalnogo allergicheskogo encefalomielita [Features of the ultrastructure of the frontal cortex and hippocampus of rats under conditions of experimental allergic encephalomyelitis]. Morphologia. 2016;10(1):54-61. [Russian]. https://doi.org/10.26641/1997-9665.2016.1.54-61
  13. Glatigny S, Bettelli E. Experimental Autoimmune Encephalomyelitis (EAE) as Animal Models of Multiple Sclerosis (MS) Cold Spring Harb Perspect Med. 2018;8(11):a028977. PMID: 29311122. PMCID: PMC6211376. https://doi.org/10.1101/cshperspect.a028977
  14. Horstmann L, Schmid H, Heinen AP, Kurschus FC, Dick HB, Joachim SC. Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model. J Neuroinflammation. 2013;10:120. PMID: 24090415. PMCID: PMC3851328. https://doi.org/10.1186/1742-2094-10-120
  15. ChoJJ, Stewart JM, Drashansky ThT, Brusko MA, Zuniga AN, Lorentsen KJ, et al. An antigen-specific semi-therapeutic treatment with local delivery of tolerogenic factors through a dual-sized microparticle system blocks experimental autoimmune encephalomyelitis. Biomaterials. 2017;143:79–92. PMID: 28772190. PMCID: PMC5870833. https://doi.org/10.1016/j.biomaterials.2017.07.029
  16. Ghareghani M, Ghanbari A, Eid A, Shaito A, Mohamed W, Mondello S, et al. Hormones in experimental autoimmune encephalomyelitis (EAE) animal models. Transl Neurosci. 2021;12(1):164-189. PMID: 34046214. PMCID: PMC8134801. https://doi.org/10.1515/tnsci-2020-0169
  17. Zapadnyuk IP, Zapadnyuk VI, Zahariya EA. Laboratornye zhivotnye. Razvedenie, soderzhanie, ispolzovanie v eksperimente [Laboratory animals. Breeding, maintenance, use in the experiment]. К: «Vischa shkola»; 1983. 383 p. [Russian]
  18. Kozhem’yakin YuM, Hromov OS, Filonenko MA. Naukovo-praktichni rekomendatsiyi z utrimannya laboratornih tvarin ta robot i z nimi [Scientific and practical recommendations for keeping laboratory animals and robots and with them]. К; 2002. 155 p. [Ukrainian]
  19. Davydova GS, Markov DA. Voprosy napravlennogo modelirovaniya allergicheskogo encefalomielita [Issues of directed modeling of allergic encephalomyelitis]. Demieliniziruyushie zabolevaniya nervnoj sistemy v eksperimente i klinike. Minsk: «Nauka i tehnika»; 1975. p. 24-33. [Russian]
  20. Davydova GS. Primenenie ayuvanta s razlichnym kolichestvom BCZh dlya vosproizvedeniya EAE u krys [The use of an adjuvant with different colic BCG for the reproduction of EAE in rats]. Ostryj encefalomielit v eksperimente i klinike. Minsk: «Nauka i tehnika»; 1969. p. 58-63. [Russian]
  21. Davydova GS, Markov DS. Hronicheskij eksperimentalnyj allergicheskij encefalomielita morskih svinok [Chronic experimental allergic encephalomyelitis of guinea pigs]. Demieliniziruyushie zabolevaniya nervnoj sistemy v eksperimente i klinike. Minsk: «Nauka i tehnika»; 1970. p. 193-206. [Russian]
  22. Gusev EI, Demina TL, Bojko AN. Rasseyannyj skleroz [Multiple sclerosis]. М; 1997. 464 p. [Russian]
  23. Zargarova TA, Favorova OO. Eksperimentalnyj autoimmunnyj encefalomielit – model rasseyannogo skleroza [Experimental autoimmune encephalomyelitis - a model of multiple sclerosis]. Immunologiya. 1999;2:5-8. [Russian]
  24. Nefodov OO, Mamchur VI, Kharchenko YuV. Modeliuvannia ta otsinka perebihu eksperymentalnoho alerhichnoho entsefalomiielitu [Modeling and evaluation of experimental allergic encephalomyelitis]. Visnyk problem biolohii i medytsyny. 2014;4(114):205-208. [Ukrainian]
  25. Serebryanaya NB, Karpenko NM, Zhitnuhin YuL. Issledovanie protektivnogo dejstviya preparata ferrovir pri ostrom eksperimentalnom allergicheskom encefalomielite [Study of the protective effect of ferrovir in acute experimental allergic encephalomyelitis]. Citokiny i vospalenie. 2010;1:33–38. [Russian]
  26. Animal Models for Autoimmune and Inflammatory Disease. Current Protocols in Immunology. 1996. 230 р.
  27. Mihajlov AT, Simirskij VN. Metody immunohimicheskogo analiza v biologii razvitiya (prakticheskoe rukovodstvo) [Methods of immunochemical analysis in developmental biology (a practical guide)]. М: «Nauka»; 1991. 288 p. [Russian]
  28. Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208-12. PMID: 13986422. PMCID: PMC2106263. https://doi.org/10.1083/jcb.17.1.208
  29. Sarkisov DS. Mikroskopicheskaya tehnika: rukovodstvo [Microscopic technique: a guide]. M: «Meditsina»; 1996. 544 p. [Russian]