ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 17 of 45
Up
УЖМБС 2021, 6(6): 141–147
https://doi.org/10.26693/jmbs06.06.141
Clinical Medicine

Changes in Glycanic Determinants of Lymphocytes Membranes in Peripheral Blood in Patients with B-Cell Chronic Lymphocytic Leukemia under Antitumor Therapy

Maslak G. S. 1, Chernenko G. P. 2, Baibakov V. M. 2, Viselko A. D. 2, Pismenetska I. Yu. 2, Kopatska M. V. 2, Konovalova O. S. 2
Abstract

The purpose of the study was to study the nature of changes in the exposure of surface glycans of peripheral blood lymphocytes in patients with B-cell chronic lymphocytic leukemia under conditions of antitumor therapy. Materials and methods. We studied the features of exposure of surface glycotopes of peripheral blood lymphocytes in patients with B-cell chronic lymphocytic leukemia under conditions of antitumor therapy using a set of seven lectins labeled with FITC and monoclonal antibodies to Tn-antigen- FITC for the detection of Tn antigen and CD43 exposure on blood lymphocytes. Cytostatic therapy included cyclophosphamide, vincristine (oncovin), prednisolone. Data were recorded on a Beckman Coulter EPICS flow cytometer. The results were processed using FCS3 Express. Results and discussion. The number of lymphocytes of healthy donors with a positive reaction to ConA, PHA-L, SNA, MAA-II and α1-acid glycoprotein amounted to 16.0±3.0%, 23.0±2.3%, 15.0±1.5%, 25.0±1.8% and 15.0±1.3%, respectively. The number of LABA-, UEA I-positive lymphocytes was 0.90±0.03% and 2.9±0.2%, respectively, and there was no binding to antibodies to Tn- and CD43-antigens. In the blood of patients with chronic lymphocytic leukemia, the level of ConA-, SNA- and MAA-II-positive lymphocytes increased relative to control by 2.2, 3.7 and 2.6 times, respectively. The number of LABA- and UEA I-positive lymphocytes in patients with chronic lymphocytic leukemia increased by 11 (p <0.01) and 23 (p <0.001) times and amounted to 10.5±0.5% and 67.5±5.5% respectively. The number of lymphocytes with CD43 antigen on their surface increased by 72 times, and the Tn antigen increased by 80 times. Cytostatic therapy reduced the level of LABA- and UEA I-positive lymphocytes by almost half, and MAA II-positive cells and lymphocytes interacting with antibodies to CD43 and Tn antigen by a third. The level of PHA-L-positive lymphocytes in the blood of chronic lymphocytic leukemia patients after undergoing alkylating therapy increased by 18.0±2.0% and almost did not differ from those obtained in the control group. Conclusion. 1. In chronic lymphocytic leukemia patients, the structure of glycoconjugates in peripheral blood lymphocytes changes, manifested in increased exposure of L-fucose, α-mannose and N-acetylneuraminic acid, which is confirmed by a significant increase in relation to the control of the number of ConA-, SNA-, MAA-II-, LABA I-positive cells. 2. Patients with chronic lymphocytic leukemia showed a significant increase in the number of lymphocytes, in which the markers of carcinogenesis CD43 and Tn antigens were found. 3. Cytostatic therapy significantly reduced the level of LABA-, UEA I- and MAA II-positive cells, as well as partially Tn- and CD43-antigen-positive lymphocytes, which indicates its positive effect on the treatment of chronic lymphocytic leukemia

Keywords: B-cell chronic lymphocytic leukemia, lectins, mono- and polyclonal antibodies, lymphocyte membranes, glycans, glycoconjugates

Full text: PDF (Ukr) 316K

References
  1. Lapovets LE, Swan GB, Yastremskaya OO. Vibranі lekcії z laboratornoї medicini. Chastina І. Gematologіchnі doslіdzhennya [Selected lectures of Laboratory Medicine. Part I. Hematological study]. 2013. s. 192-193 [Ukrainian]
  2. Mohr A, Cumin M, Bagacean C, Pochard P, Le Dantec C, Hillion S, et al. The regulatory capacity of B cells directs the aggressiveness of CLL. Oncoimmunology. 2018 Dec 12;8(3):1554968. https://www.ncbi.nlm.nih.gov/pubmed/30723588. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6350696. https://doi.org/10.1080/2162402X.2018.1554968
  3. Rodrigues Mantuano N, Natoli M, Zippelius A, Läubli H. Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. J Immunother Cancer. 2020 Oct;8(2):e001222. https://www.ncbi.nlm.nih.gov/pubmed/33020245. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7537339. https://doi.org/10.1136/jitc-2020-001222
  4. Yehuda S, Padler-Karavani V. Glycosylated Biotherapeutics: Immunological Effects of N-Glycolylneuraminic Acid. Front Immunol. 2020 Jan 23;11:21. https://www.ncbi.nlm.nih.gov/pubmed/32038661. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6989436. https://doi.org/10.3389/fimmu.2020.00021
  5. Lutsik MD, Kusen' SI. Issledovaniye membrannykh glikoproteinov eritrotsitov s primeneniyem lektinov [Study of erythrocyte membrane glycoproteins using lectins]. Ukr Biokhim zhurn. 1987;59(6):3-8. [Russian]
  6. Hnatiuk OS, Tsymbal DO, Minchenko DO, Khita OO, Viletska YM, Rundytska OV, et al. Insulin receptor substrate 1 gene expression is strongly up-regulated by HSPB8 silencing in U87 glioma cells. Endocrine Regulations. 2020;54(4):231-243. https://www.ncbi.nlm.nih.gov/pubmed/33885248. https://doi.org/10.2478/enr-2020-0026
  7. Lee Y. Roles of circadian clocks in cancer pathogenesis and treatment. Exp Mol Med. 2021;53:1529-1538. https://www.ncbi.nlm.nih.gov/pubmed/34615982. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc8568965. https://doi.org/10.1038/s12276-021-00681-0
  8. Li HX. The role of circadian clock genes in tumors. Onco Targets Ther. 2019;12:3645-3660. https://www.ncbi.nlm.nih.gov/pubmed/31190867. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6526167. https://doi.org/10.2147/OTT.S203144
  9. Cheson BD, Bennett JM, Grever M, Kay N, Keating MJ, O'Brien S, et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood. 1996;87:4990-4907. https://www.ncbi.nlm.nih.gov/pubmed/8652811. https://doi.org/10.1182/blood.V87.12.4990.bloodjournal87124990
  10. Wierda WG, O'Brien SM. Initial therapy for patients with chronic lymphocytic leukemia. Semin Oncol. 2006;33:202-209. https://www.ncbi.nlm.nih.gov/pubmed/16616067. https://doi.org/10.1053/j.seminoncol.2006.01.014
  11. Moreton P, Kennedy B, Lucas G, Leach M, Rassam SM, Haynes A, et al. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J Clin Oncol. 2005 May 1;23(13):2971-9. https://www.ncbi.nlm.nih.gov/pubmed/15738539. https://doi.org/10.1200/JCO.2005.04.021
  12. Wierda WG. Current and investigational therapies for patients with CLL. Hematology Am Soc Hematol Educ Program. 2006;285-294. https://www.ncbi.nlm.nih.gov/pubmed/17124074. https://doi.org/10.1182/asheducation-2006.1.285
  13. Hannun YA. Apoptosis and the dilemma of cancer chemotherapy. Blood. 1997 Mar 15;89(6):1845-53. https://www.ncbi.nlm.nih.gov/pubmed/9058703. https://doi.org/10.1182/blood.V89.6.1845
  14. Stavrovskaya AA. Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Mosc). 2000 Jan;65(1):95-106.
  15. Samali A, Fulda S, Gorman AM, Hori O, Srinivasula SM. Cell Stress and Cell Death. Int J Cell Biol. 2010;2010:245803. https://www.ncbi.nlm.nih.gov/pubmed/20339528. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc2843860. https://doi.org/10.1155/2010/245803
  16. Oslowski CM, Urano F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 2011;490:71-92. https://www.ncbi.nlm.nih.gov/pubmed/21266244. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3701721. https://doi.org/10.1016/B978-0-12-385114-7.00004-0
  17. Boscher C, Dennis JW, Nabi IR. Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol. 2011;23(4):383-392. https://www.ncbi.nlm.nih.gov/pubmed/21616652. https://doi.org/10.1016/j.ceb.2011.05.001
  18. Stanley P. Golgi Glycosylation. Cold Spring Harb Perspect Biol. 2011 Apr 1;3(4):a005199. https://www.ncbi.nlm.nih.gov/pubmed/21441588. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3062213. https://doi.org/10.1101/cshperspect.a005199
  19. Häuselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Front Oncol. 2014 Feb 13;4:28. https://www.ncbi.nlm.nih.gov/pubmed/24592356. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3923139. https://doi.org/10.3389/fonc.2014.00028
  20. Boyum A. Separation of leukocytes from blood and bone marrow. Scand J Clin Lab Investig. 1968;21(97):1-9.
  21. Zyganshina MM, Dolgushin NV, Kulikova GV, Fayzullina NM, Dovgan' AA, Abdurakhmanova NF, et al. Otsenka ekspressii glikanov v epitelial'nykh strukturakh endometriya kak prediktivnyy faktor retseptivnosti endometriya [Evaluation of glycan expression in the epithelial structures of the endometrium as a predictive factor for endometrial receptivity]. Ginekologiya. 2020;22(6):38-43. [Russian]
  22. Matsumoto Y, Kudelka MR, Hanes MS, Lehoux S, Dutta S, Jones MB, et al. Identification of Tn antigen O-GalNAc-expressing glycoproteins in human carcinomas using novel anti-Tn recombinant antibodies. Glycobiology. 2020 Apr 20;30(5):282-300. https://www.ncbi.nlm.nih.gov/pubmed/32415964. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7724743. https://doi.org/10.1093/glycob/cwaa044
  23. Gluzman DF, Sklyarenko LM, Ivanovskaya TS. Monoklonal'nyye antitela i immunotsitokhimicheskiye metody v diagnostike V-kletochnykh nekhodzhkinskikh limfom [Monoclonal antibodies and immunocytochemical methods in the diagnosis of B-cell non-Hodgkin's lymphomas]. Onkologíya. 2015;3(39). [Russian]. Available from: https://health-ua.com/article/6651-monoklonalnye-antitela-i-immunotcitohimicheskie-metody-v-diagnostike-vkleto
  24. Gnedkova IA, Lisyaníy II, Stanetskaya DN. Lektinsvyazívayushchiye i tumorogenníe svoystva kletok gliomí S6 [Lectin-binding and tumorigenic properties of C6 glioma cells]. Onkologiya. 2015;17(1):4-11. [Russian]
  25. Netronina О, Peleshenko H, Maslak H. Glycosylation of blood lymphocytes in inflammatory processes. Aktualʹni problemy suchasnoyi biokhimiyi, klitynnoyi biolohiyi ta fiziolohiyi: materialy V Mizhnarodnoyi naukovoyi konferentsiyi m. Dnipro, 2020. Dnipro: Vydavnytstvo «Lira»; 2020. p. 113.