ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 38 of 43
Up
УЖМБС 2017, 2(2): 223–233
https://doi.org/10.26693/jmbs02.02.223
Biology

Characteristics and Theoretical Foundations of Methods to Analyze Heart Rate Variability

Kovalenko S. O.
Abstract

The present stage of the society development is characterized by significant achievements in the development of methods to study the microstructure of a living organism and rapid development and availability of the advanced information technologies. One of the spheres of applying computer technologies is the assessment of biological rates, and in particular, heart rate variability. The aim of the paper is to analyze and generalize the literature sources in terms of the methods of heart rate variability. Results. The scientific publications on the historical development of the methods for analyzing heart rate variability, the characteristics of statistic, geometric and spectral methods of haemodynamic indicator oscillations were analyzed. The data concerning the requirements to the duration of registration of cardiointervalograms and the reproducibility of their characteristics were considered. It was found out that significant number of investigations concerning the variability of heart rate in humans and animals had been conducted. However, there are no unified norms of spectral component values of these indicators that may be associated with many factors: the heterogeneity of the studied samples, the application of the different methods of spectral analysis, non-compliance with the standard conditions for measurements. At the same time, almost no attention is paid to the analysis of inter-individual deviance of wave structure indicators of heart rate and their reactivity to the load. It can lead to the false evaluation of measurement results. Few publications focus on the study of the oscillations of blood stroke volume in healthy individuals and cross-spectral analysis of this indicator with the changes of R-R interval duration. Therefore, literature analysis shows the necessity of further investigation of both methodological and theoretical aspects of heart rate variability, their individual features in healthy individuals. Conclusions. There are opportunities for the improvement of existing methods and the development of new ones of analysis and interpretation of heart rate variability. Prospects for further investigations. So, analysis of literature determines the necessity for further investigations of variability of heart rate and also individual peculiarities in healthy people.

Keywords: heart rate variability

Full text: PDF (Ukr) 246K

References
  1. Aksenov VV. Methodical bases of cybernetic analysis of cardiac rhythm. In: Rhythm of heart at sportsmen Ed RM Baevskiy, RE Motyilyanskaya. M: FiS; 1986: 20-42. (in Russ)
  2. Baevskiy RM, Ivanov GG, Chireykin LV, Gavrilushkin AP, Dovgalevskiy PYa, Kukushkin YuA, Mironova TF, et al. Analiz variabelnosti serdechnogo ritma pri ispolzovanii razlichnyih elektrokardiograficheskih sistem (metodicheskie rekomendatsii). Vestnik aritmologii. 2001; 24: 65-87. (in Russ)
  3. Baevskiy RM, Kirillov OI, Kletskin SZ. Matematicheskiy analiz izmeneniy serdechnogo ritma pri stresse. M; 1984. 219 s. (in Russ)
  4. Baevskiy RM, Nikulina GA. Holterovskoe monitorirovanie v kosmicheskoy meditsine: analiz variabelnosti serdechnogo ritma. Vestnik aritmologii. 2000; 16: 6-16. (in Russ)
  5. Belkina LM, Tarasova OS, Kirillina TN, Usacheva MA. Farmakologicheskiy analiz spektrov variabelnosti parametrov gemodinamiki u kryis s razlichnoy ustoychivostyu k povrezhdayuschim faktoram. Mater IV Vserossiyskoy konf “Mehanizmyi funktsionirovaniya vistseralnyih sistem”. SPb, 2005: 38-9.
  6. Vorobyov KP. Reaktyvnist' do hiperoksiyi pry porushennyakh vehetatyvnoho rehulyuvannya. Fiziolohichnyy zhurnal. 1999; 3: 96-102. (in Ukr)
  7. Voskresenskiy AD, Venttsel MD. Primenenie metodov korrelyatsionnogo analiza dlya izucheniya reaktsiy serdechno-sosudistoy sistemyi cheloveka v kosmicheskom polete na korable «Voshod-1». Kosmicheskie issledovaniya. 1965; 3 (6): 927-34. (in Russ)
  8. Dabrovski A, Dabrovski B, Piotrovich R. Sutochnoe monitorirovanie EKG. M: Medpraktika; 2000. 208 s. (in Russ)
  9. Dembo AG, Zemtsovskiy EV. Sportivnaya kardiologiya. L: Meditsina; 1989. 464 s. (in Russ)
  10. Zarubin FE. Variabelnost serdechnogo ritma: standartyi izmereniya, pokazateli, osobennosti metoda. Vestnik aritmologii. 1998; 10: 25-30. (in Russ)
  11. Ilin VN, Batyirbekova LM, Kurdanova MH, Kurdanov HA. Ritmokardiograficheskie metodyi otsenki funktsionalnogo sostoyaniya organizma cheloveka. M: Ileksa; Stavropol, Servis-shkola; 2003. 80 s. (in Russ)
  12. Karp VP, Katinas GS. Opyit i perspektivyi ispolzovaniya matematicheskih metodov v hronobiologicheskih issledovaniyah. V kn.: Hronobiologiya i hronomeditsina. Pod red FI Komarova, SI Rapoporta. M, Triada-H; 2000: 168-194. (in Russ)
  13. Kovalenko SO. Regulatory rhythms of haemodynamics and their individual features at people: Dis. Dr. Sci. (Biol.). Cherkasy; 2009. 372 s. (in Ukr.)
  14. Kovalenko SO, Kudiy LI. Heart Rate Variability. Methodical aspects. 2016. Cherkasy, Cherkas'kyy natsional'nyy universytet im B Khmel'nyts'koho; 2016. 298 p. (in Ukr.)
  15. Makarov LM. Holterovskoe monitorirovanie. (Rukovodstvo dlya vrachey po ispolzovaniyu metoda u detey i lits molodogo vozrasta). M: Medpraktika; 2000. 214 s. (in Russ)
  16. Mashin VA. Nestatsionarnost i dlitelnost vremennogo ryada serdechnogo ritma pri diagnostike funktsionalnyih sostoyaniy. Biofizika. 2007; 52 (2): 344-54. (in Russ)
  17. Mironova TF, Mironov VA. Klinicheskiy analiz volnovoy strukturyi sinusovogo ritma serdtsa (Vvedenie v ritmokardiografiyu i atlas ritmokardiogramm). Chelyabinsk; 1998. 162 s. (in Russ)
  18. Mihaylov VM. Variabelnost ritma serdtsa: opyit prakticheskogo primeneniya metoda. Ivanovo, Ivanovskaya gosudarstvennaya meditsinskaya akademiya; 2003. 290 s. (in Russ)
  19. Nesterov VP, Nesterov SV. Novyie vozmozhnosti pulsometricheskoy otsenki haraktera vegetativnoy regulyatsii serdechno-sosudistoy sistemyi cheloveka. Materialyi IV Vserossiyskoy konferentsii «Mehanizmyi funktsionirovaniya vistseralnyih sistem». SPb, 2005:168-9. (in Russ)
  20. Parin VV, Baevskiy RM, Gazenko OG. Dostizheniya i problemyi sovremennoy kosmicheskoy kardiologii. Kardiologiya. 1965; 5 (3): 3-12. (in Russ)
  21. Parin VV, Baevskiy RM, Gazenko OG, Volkov YuN. Kosmicheskaya kardiologiya. L: Meditsina; 1967. 225 s. (in Russ)
  22. Ragozin AN. Informativnost spektralnyih pokazateley variabelnosti serdechnogo ritma. Vestnik aritmologii. 2001; 22: 37-40. (in Russ)
  23. Ruttkay-Nedetski I. Problemyi elektrokardiologicheskoy otsenki vliyaniya vegetativnoy nervnoy sitemyi na serdtse. Vestnik aritmologii. 2001; 22: 56-60. (in Russ)
  24. Ryabyikina GV, Sobolev AV. Variabelnost ritma serdtsa. M: Starko; 1998. 200 s. (in Russ)
  25. Serdtse i sport. Ocherki sportivnoy kardiologii. Pod obsch red VL Karpmana, GM Kukolevskogo. M: Meditsina; 1968. 518 s. (in Russ)
  26. Sokolov SF, Malkina TA. Klinicheskoe znachenie otsenki variabelnosti ritma serdtsa. Serdtse. 2002; 1 (2): 72-5. (in Russ)
  27. Fleyshman AN. Variabelnost ritma serdtsa i medlitelnyie kolebaniya gemodinamiki (nelineynyie fenomenyi v klinicheskoy praktike). Novosibirsk: izd. Sibirskogo otdeleniya RAN; 2009. 185 s. (in Russ)
  28. Hayutin VM, Bekbosyinova MS, Lukoshkova EV. Tahikardiya pri glotanii i spektralnyiy analiz kolebaniy chastotyi sokrascheniy serdtsa. Byul Eksperim Biol Med. 1999; 127: 620-4. (in Russ)
  29. Hayutin VM, Lukoshkova EV. Kolebaniya chastotyi serdtsebieniy: spektralnyiy analiz. Vestnik aritmologii. 2002; 26: 10-8. (in Russ)
  30. Sheyh-Zade YuR, Muhambetaliev GH, Cherednik IL. Funktsionalnyiy smyisl variabelnosti serdechnogo ritma. Mater V Vserossiyskoy konferentsii «Mehanizmyi funktsionirovaniya vistseralnyih sistem». SPb. 2007: 355-6. (in Russ)
  31. Sheyh-Zade YuR, Skibitskiy VV, Kathanov AM, Sheyh-Zade KYu, Suhomlinov VV, Kudryashov EA, Cherednik NL, et al. Alternativnyiy podhod k otsenke variabelnosti serdechnogo ritma. Vestnik aritmologii. 2001; 22: 49-55. (in Russ)
  32. Yabluchanskiy NI, Martyinenko AV, Isaeva AS. Osnovyi prakticheskogo primeneniya neinvazovnoy tehnologii issledovaniya regulyatornyih sistem cheloveka. HarkIv, Osnova; 2000. 88 s. (in Russ)
  33. Akselrod S, Gordon D, Ubel FA, et al. Power spectrum analysis of the heart rate fluctuation: a quantative probe of beat to beat cardiovascular control. Science. 1981; 213: 220-2.
  34. Appel ML, Berger RD, Saul GP, Smith JM, Cohen RJ. Beat to beat variability in cardiovascular variables: noise or music? J Am Coll Cardiol. 1989; 14: 1139-48.
  35. Atlaoui D, Pichot V, Lacoste L, Barale F, Lacour JR, Chatard JC. Heart rate variability, training variation and performance in elite swimmers. Int J Sports Med. 2007; 28 (5): 394-400. https://doi.org/10.1055/s-2006-924490
  36. Bär KJ, Schulz S, Koschke M, Harzendorf C, Gayde S, Berg W, Voss A, Yeragani VK, Boettger MK. Correlations between the autonomic modulation of heart rate, blood pressure and the pupillary light reflex in healthy subjects. J Neurol Sci. 2009; 279 (1-2): 9-13. https://doi.org/10.1016/j.jns.2009.01.010
  37. Bernardi L, Passino C, Spadacini G, et al. Arterial baroreceptors as determinants of 0.1 Hz and respiration-related changes in blood pressure and heart rate spectra. In: Frontiers of blood pressure and heart rate analysis. Amsterdam, IOS Press; 1997. p. 241-52.
  38. Bouteau N, Tavernier B. Stroke volume variation as an indicator of fluid responsiveness. Anesth Analg. 2004; 98 (1): 278-9. https://www.ncbi.nlm.nih.gov/pubmed/14693653
  39. Brown DR, Cassis LA, Silcox DL, Brown LV, Randall DC. Empirical and theoretical analysis of the extremely low frequency arterial blood pressure power spectrum in unanesthetized rat. Am J Physiol Heart Circ Physiol. 2006; 291: H-2816-24. https://doi.org/10.1152/ajpheart.00135.2006
  40. Busjahn A, Voss A, Knoblanch H, Knoblanch M, Jeschke E, Wessel N, Bohlender J, et al. Angiotensin-converting enzyme and angiotenzinogen gene polymorphisms and heart rate variability in twins. Am J Cardiol. 1998; 81 (6): 755-60.
  41. Cevese A, Grasso R, Poltronieri R, Schena F. Vascular resistance and arterial pressure low-frequency oscillations in the anesthetized dog. Am J Physiol. 1995: 268 (1): H.7-16.
  42. Chowdhary S, Ng GA, Nuttall SL, Coote JH, Ross HF, Townend JN. Nitric oxide and cardiac parasympathetic control in human heart failure. Clin Sci (Lond). 2002; 102 (4): 397-402. https://www.ncbi.nlm.nih.gov/pubmed/11914101
  43. Cooley RL, Montano N, Cogliati C, et al. Evidence for a central origin of low-frequency oscillation in RR-interval variability. Circulation. 1998; 98: 556-61.
  44. Crowford MH, Bernstein SJ, Deedwania PC, DiMarco JP, Ferrick KJ, Garson A jr, Green LA, et al. ACC/AHA guidelines for ambulatory electrocardiography: a report of the American College of Cardiology/ American Heart Association. Task Forse on Practice Guidelines (Commite to Revise the Guidelines for Ambulatory Electrocardiography). J Am Coll Cardiol. 1999; 34: 912-48.
  45. Dabire H, Lacolley P, Chaouche-Teyara K, Fournier B, Safar ME. Relationship between arterial distensibility and low-frequency power spectrum of blood pressure in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 2002; 39 (1): 98-106. https://www.ncbi.nlm.nih.gov/pubmed/11743232
  46. De Boer RW, Karemaker JK, Strackee J. Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol. 1987; 253 (3): 650-7. https://www.ncbi.nlm.nih.gov/pubmed/3631301
  47. Dishman RK, Nakamura Y, Garsia ME, Thompson RW, Dunn AL, Blair SN. Heart rate variability, trait anxiety, and perceived stress among physically fit men and women. Int J Psychophysiol. 2000; 37 (2): 121-33. https://www.ncbi.nlm.nih.gov/pubmed/10831999
  48. Ditor DS, Kamath MV, Macdonald MJ, Bugaresti J, McCartney N, Hicks AL. Reproducibility of heart rate variability and blood pressure variability in individuals with spinal cord injury. Clin Auton Res. 2005; 15 (6): 387-93. https://doi.org/10.1007/s10286-005-0293-4
  49. Drenjancevic I, Grizelj I, Harsanji-Drenjancevic I, Cavka A, Selthofer-Relatic K. The interplay between sympathetic overactivity, hypertension and heart rate variability (review, invited). Acta Physiol Hung. 2014 Jun; 101 (2): 129-42. https://doi.org/10.1556/APhysiol.101.2014.2.1
  50. Dubreuil E, Ditto B, Dionne G, Pihl RO, Tremblay RE, Boivin M, Perusse D. Familiality of heart rate and cardiac-related autonomic activity in five-month-old twins: the Quebec newborn twins study. Psychophysiology. 2003; 40 (6): 849-62.
  51. Eckberg DL. Sympathovagal balance. A critical appraisal. Circulation. 1997; 96: 3224-32.
  52. Fleisch A, Beckmann R. Die raschen Schwankungen der Pulsfrequenz registiert mit dem Pulszeitschreiber. Zeitschr ges exp Med. 1932; 80 (3/4): 487-510.
  53. Furlan R, Guzetti S, Crivellaro W, Dassi S, Tinelli M, Baselli G, Cerutti S, Lombardi F, Pagani M, Malliani A. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation. 1990; 81: 537-47. https://www.ncbi.nlm.nih.gov/pubmed/2297860
  54. Goldberg J, Kadish A. Influence of sympathetic and parasympathetic maneuvers on heart rate variability. In: Noninvasive Electrocardiology. Clinical aspects of Holter monitoring. A Moss, S Stern (ed). Sounders Co, University Press, Cambridge, UK; 1997. p. 207-23.
  55. Gulli G, Cooper VL, Claydon V, Hainsworth R. Cross-spectral analysis of cardiovascular parameters whilst supine may identify subjects with poor orthostatic tolerance. Clin Sci. 2003; 105 (1): 119-26. https://doi.org/10.1042/CS20020322
  56. Guzzetti S, Cogliati C, Broggi C, Carozzi C, Cardirole D, Lombardi F, Malliani A. Influences of neural mechanisms on heart period and arterial pressure variabilities in quadriplegic patients. Am J Physiol. 1994; 266: H.1112-20.
  57. Haller A. Elementa physiologiae corporis humani: In 8 t. Lausanne, S. d’ Arnay; 1760: 2 (lib.6): 330-2.
  58. Heart rate variability. Standards of Measurement, Physiological interpretation and clinical use. Circulation. 1996; 93: 1043-65. https://doi.org/10.1161/01.CIR.93.5.1043
  59. Hering E. Uber den Einfluss der Atumung auf den Kreislauf. I. Mittheilung. Uber Athembewegungen des Gefassystems. S-Ber Akad Wiss (Wien). Math-naturwiss. Kl. 2. Abt. 2. 1869; Bd 60: 829-56.
  60. Hill LK, Siebenbrock A. Are all measures created equal? Heart rate variability and respiration - biomed 2009. Biomed Sci Instrum. 2009; 45: 71-6. https://www.ncbi.nlm.nih.gov/pubmed/19369742
  61. Hirayanagi K, Iwasaki K, Sasaki T, Kinugasa H, Miyamoto A, Yajima K. Sensitivity analyses of heart rate variability variables by incremental, passive head-up tilt. Uchu Koku Kankyo Igaku. 1999; 36 (2): 67-74. https://www.ncbi.nlm.nih.gov/pubmed/11543316
  62. Hojgaard MV, Holstein-Rathlou NH, Agner E, Kanters JK. Reproducibility of heart rate variability, blood pressure variability and baroreceptor sensitivity during rest and head-up tilt. Blood Press Monit. 2005; 10 (1): 19-24. https://www.ncbi.nlm.nih.gov/pubmed/15687870
  63. Holter NJ. New method for heart studies: continuous electrocardiography of active subjects over long period is now practical. Science. 1961; 131: 1214-20. https://www.ncbi.nlm.nih.gov/pubmed/13908591
  64. Inone K, Miyake S, Kumashiro M, Ogata H, Yoshimura O. Power spectral analysis of heart rate variability in traumatic quadriplegic humans. Am J Physiol. 1990; 258: H.1722-6.
  65. Intona N, Yodlowski E, Pruett J, Montano N, Porta A, Crumrine R. Sympathovagal effects of spinal anesthesia in heart rate variability analysis. Anesth Analg. 1995; 80: 313-21. https://www.ncbi.nlm.nih.gov/pubmed/7818119
  66. Jansen BJA, Oosting J, Slaff DW, et al. Hemodynamic basis of oscillation in systemic arterial pressure in conscious rat. Amer J Physiol. 1995; 266 (1): 62-71.
  67. Jira M, Zavodna E, Horzikova N, Novakova Z, Fiser B. Baroreflex sensitivity as an individual characteristic feature. Physiol Res. 2006; 55 (3): 349-51.
  68. Kamath MV, Fallen EL. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Revs Biomed Eng. 1993; 21: 245-311. https://www.ncbi.nlm.nih.gov/pubmed/8243093
  69. Kay SM, Marple SL. Spectrum analysis: A modern perspective. Proc IEEE. 1981; 69: 1380-419.
  70. Kingwell BA, Thompson JM, Kaye DM, McPherson GA, Jennings GL, Esler MD. Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation. 1994; 90: 234-40. https://www.ncbi.nlm.nih.gov/pubmed/8026003
  71. Kleiger RE, Miller JP, Bigger JT, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987; 59 (4): 256-62. https://www.ncbi.nlm.nih.gov/pubmed/3812275
  72. Koh J, Brown TE, Beightol LA, Ha OY, Eckberg DL. Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects. J Physiol (Lond). 1994; 474: 483-95.
  73. Kovalenko S. Spectral analysis of the stroke blood volume oscillations among men at rest and with different loadings. Experimental and Clinical Physiology and Biochemistry. 2008; 2: 59-63.
  74. Kovalenko SA, Kudii LI. Heart rate variability in subjects with different respiratory rates. Human Physiology. 2006; 32 (6): 742-3.
  75. Kovalenko SO. Cross-spectral analysis of the stroke blood volume oscillations and RR interval duration among men during different loadings. Fiziolohichnyi zhurnal (Kiev, Ukraine: 1994). 2007; 54 (1): 79-84.
  76. Kovalenko SO, Kudiĭ LI, Kalenichenko OV. Heart rhythm variability in individuals with different respiration frequency. Fiziolohichnyi zhurnal (Kiev, Ukraine: 1994). 2004; 50 (6): 43-7.
  77. Kovalenko SO, Tokar SI. The wave structure of the stroke volume and RR-interval oscillations in the low wave range of the heart rhythm. Fiziolohichnyi zhurnal (Kiev, Ukraine: 1994). 2006; 53 (2): 36-41.
  78. Kupper NH, Willemsen G, van den Berg M, de Boer D, Posthuma D, Boomsma DI, de Gens EJ. Heritability of ambulatory heart rate variability. Circulation. 2004; 110 (18): 2792-6. https://doi.org/10.1161/01.CIR.0000146334.96820.6E
  79. Lang E, Szilagyi N, Metneki J, Weisz J. Effects of mental load on the spectral components of heart period variability in twins. Acta Biochim Biophys Hung. 1991; 2 6(1-4): 111-20. https://www.ncbi.nlm.nih.gov/pubmed/1844794
  80. Linden D, Diehl RR. Comparison of standard autonomic tests and power spectral analysis in normal adults. Muscle Nerve. 1996; 19: 556-62. https://doi.org/10.1002/(SICI)1097-4598(199605)19:5<556::AID-MUS2>3.0.CO;2-A
  81. Liu H, Yambe T, Sasada H, Nanka S, Tanaka A, Nagatomi R, Nitta S. Comparison of heart rate variability and stroke volume variability. Auton Neurosci. 2004; 116 (1-2): 69-75. https://doi.org/10.1016/j.autneu.2004.09.003
  82. Lucini D, Mela GS, Malliani A, Pagani M. Evidence of increased sympathetic vasomotor drive with shorter acting dihydropyridine calcium channel antogonist in human hypertension: a study using spectral analysis of RR interval and systolic arterial pressure variability. J Cardiovasc Pharmacol. 1997; 29: 676-83. https://doi.org/10.1097/00005344-199705000-00017
  83. Maestri R, Pinna GD, Robbi E, Capomolla S, La Rovere MT. Noninvasive measurement of blood pressure variability: accuracy of the Finometer monitor and comparison with the Finapres device. Physiol Meas. 2005; 26 (6): 1125-36. https://doi.org/10.1088/0967-3334/26/6/021
  84. Malik M. Geometrical methods for heart rate variability assessment. In: Malik M, Camm J (eds). Heart rate variability. Armonk, NY, Futura Publ. Co; 1995. p. 45-61.
  85. Malik M. Heart Rate Variability: Time Domain. In: Noninvasive Electrocardiology. Clinical aspects of Holter monitoring. A Moss, S Stern (ed). Saunders Co, University Press, Cambridge, UK; 1997. p. 161-74.
  86. Malik M, Camm AJ. Significance of long term components of heart rate variability for the further prognosis after acute myocardial infarction. Cardiovasc Res. 1990; 24: 793-803. https://doi.org/10.1093/cvr/24.10.793
  87. Malik M, Xia R, Odemuyiwa O, et al. Influence of the recognition artefact in the automatic analysis of long-term electrocardiograms on time-domain measurement of heart rate variability. Med Biol Eng Comput. 1993; 31: 539-44. https://doi.org/10.1007/BF02441992
  88. Malliani A. Association of heart rate variability components with physiological regulatory mechanisms. In: Heart Rate Variability. Malic M, Camm AJ (eds). Armonk, NY, Futura Company Inc; 1995. p. 173-88.
  89. Malliani A. Heart rate variability: a challenge for a new way of thinking. J Cardiol Fail. 1996; 2: 197-202. https://doi.org/10.1016/S1071-9164(96)80042-X
  90. Malliani A. The pattern of sympathovagal balance explored in the frequency domain. News Physiol Sci. 1999; 14: 111-7.
  91. Malliani A. Fiziologicheskaya interpretatsiya spektralnyih komponentov variabelnosti serdechnogo ritma (HRV). Vestnik aritmologii. 1998; 3: 47-57. (in Russ)
  92. Malliani A, Pagani M, Lombardi F. Physiology and clinical implications of variability of cardiovascular parameters with focus on heart rate and blood pressure. Am J Cardiol. 1994; 73 (7): 3-9. https://doi.org/10.1016/0002-9149(94)90617-3
  93. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain: Research Advances Series. Circulation. 1991; 84: 482-92. https://doi.org/10.1161/01.CIR.84.2.482
  94. Martinmaki K, Rusko H, Kooistra L, Kettunen J, Saalasti S. Intraindividual validation of heart rate variability indexes to measure vagal effects on hearts. Am J Physiol Heart Circ Physiol. 2006; 290 (2): H640-7. https://doi.org/10.1152/ajpheart.00054.2005
  95. Mayer SS. D Akad. Wiss. Wien, 1876; 74: 302.
  96. McClintock P, Stefanovska A. Interactions and synchronization in the cardiovascular system. Fluctuation and Noise Letters. 2003; 3 (2): 167-76. https://doi.org/10.1142/S0219477503001233
  97. Moak JP, Goldstein DS, Eldadah BA, Saleem A, Holmes C, Pechnik S, Sharabi Y. Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm. 2007; 4 (12): 1523-9. https://doi.org/10.1016/j.hrthm.2007.07.019
  98. Montano N, Guecchi, Riscone T, et al. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation. 1994; 90: 1826-31. https://doi.org/10.1161/01.CIR.90.4.1826
  99. Montano N, Ruscone G, Porta A, et al. Power spectrum analysis to assess the changes in sympathovagal balance during graduated ortostatic tilt. Circulation. 1994; 90: 1824-31. https://doi.org/10.1161/01.CIR.90.4.1826
  100. Munakata M, Kameyama J, Nunokawa T, Ito N, Yoshinaga K. Altered Mayer wave and baroreflex in high spinal cord injury. Am J Hypertens. 2001; 14 (2): 141-8. https://www.ncbi.nlm.nih.gov/pubmed/11243305
  101. Myers CW, Cohen MA, Eckberg DL, Taylor JA. A model for the genesis of arterial pressure Mayer waves from heart rate and sympathetic activity. Auton Neurosci. 2001; 91 (1-2): 62-75. https://doi.org/10.1016/S1566-0702(01)00289-2
  102. Novak V, Novak P, de Champlain J, Nadeau R. Altered cardiorespiratory transfer in hypertension. Hypertension. 1994; 23: 104-13. https://doi.org/10.1161/01.HYP.23.1.104
  103. Pagani M., Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell'Orto S, Piccaluga E, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a maker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986; 59: 178-93. https://www.ncbi.nlm.nih.gov/pubmed/2874900
  104. Pagani M, Malliani A. Interpreting oscillation of muscle sympathetic nerve activity and heart rate variability. J Hypertension. 2000; 18: 1709-19. https://doi.org/10.1097/00004872-200018120-00002
  105. Pomeranz M, Macaulay RJB, Caudill MA. Assessment of anatomic function in humans by heart rate spectral analysis. Am J Physiol. 1985; 248: H.151-3.
  106. Portier H, Lonisy F, Lande D, Berthelot M, Guezennee CY. Intense endurance training on heart rate and blood pressure variability in runners. Med Sci Sports Exerc. 2001; 33 (7): 1120-5. https://www.ncbi.nlm.nih.gov/pubmed/11445759
  107. Richter DW, Spyer KM. Cardiorespiratory control. In: Central regulation of autonomic function. NY. Oxford University Press; 1990. p. 189-207.
  108. Rimoldi O, Pierimi S, Ferrari A, Cerutti S, Pagani M, Malliani A. Analysis of short-term oscillation of R-R and arterial pressure in conscious dogs. Am J Physiol. 1990; 258: H.967-76.
  109. Sanderson JE, Yeung LY, Yeung DT, Kay RL, Tomlinson B, Critchley JA, Woo KS, Bernardi L. Impact of changes in respiratory frequency and posture on power spectral analysis of heart rate and systolic blood pressure variability in normal subjects and patients with heart failure. Clin Sci (Lond). 1996; 91 (1): 35-43. https://www.ncbi.nlm.nih.gov/pubmed/8774258
  110. Sasano H, Hayano J, Tsuda T, Katsuya H. Effects of sympathetic nerve blockades on low-frequency oscillations of human earlobe skin blood flow. J Auton Nerv Syst. 1999; 77 (1): 60-7. https://doi.org/10.1016/S0165-1838(99)00029-6
  111. Saul JP, Albrecht P, Berger RD, Cohen RJ. Analysis of long-term heart rate variability: methods, 1/f scaling and implications. In: Computers in Cardiology;1987. Washington, DC, IEEE Computer Society Press; 1988. p. 419-22.
  112. Sayers BM. Analysis of heart rate variability. Ergonomics. 1973; 16: 17-32. https://doi.org/10.1080/00140137308924479
  113. Schäfer A, Kratky KW. Estimation of breathing rate from respiratory sinus arrhythmia: comparison of various methods. Ann Biomed Eng. 2008; 36 (3): 476-85. https://doi.org/10.1007/s10439-007-9428-1
  114. Schroeder EB, Whitsel EA, Evans GW, Prineas RJ, Chambless LE, Heiss G. Repeatability of heart rate variability measures. J Electrocardiol. 2004; 37 (3): 163-72. https://www.ncbi.nlm.nih.gov/pubmed/15286929
  115. Sesay M, Tanzin-Fin P, Gosse P, Ballanger P, Maurette P. Real-time heart rate variability and its correlation with plasma cathecholamines during laparoscopic adrenal pheochromocytoma surgery. Anesth Analg. 2008; 106 (1): 164-70. https://doi.org/10.1213/01.ane.0000289531.18937.0a
  116. Siebert J, Drabik P, Lango R, Szyndler K. Stroke volume variability and heart rate power spectrum in relation to posture changes in healthy subjects. Med Sci Monit. 2004; 10 (2): 31-7.
  117. Smith SM, Samani NJ, Sammons EL, Rathbone WE, Potter JF, Bentley S, Panerai RB. Influence of non-invasive measurements of arterial blood pressure in frequency and time-domain estimates of cardiac baroreflex sensitivity. J Hypertens. 2008; 26 (1): 76-82. https://doi.org/10.1097/HJH.0b013e3282f06e9c
  118. Spadacini G, Passino C, Leuzzi S, Valle F, Piepoli M, Calciati A, Sleight P, Bernardi L. Frequency-dependent baroreflex control of blood pressure and heart rate during physical exercise. Int J Cardiol. 2006; 107 (2): 171-9. https://doi.org/10.1016/j.ijcard.2005.03.011
  119. Taylor JA, Carr DL, Myers CW, Eckberg DL. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation. 1998; 98 (6): 547-55. https://www.ncbi.nlm.nih.gov/pubmed/9714112
  120. Traube L. Uber periodische Tatigkeits - Aeusserungen des vasomotorischen und Hemmungs-Nervenzentrums. Zents Bl med Wiss. 1865; Ig 3 (56): 881-5.
  121. Uusitalo AL, Vanninen E, Levalahti E, Battie MC, Videman T, Kaprio J. Role of genetic and environmental influences on heart rate variability in middle-aged men. Am J Physiol Heart Circ Physiol. 2007; 293 (2): H.1013-22. https://doi.org/10.1152/ajpheart.00475.2006
  122. Voss A, Busjahn A, Wessel N, Schurath R, Faulhaber HD, Luft FC, Dietz R. Familial and genetic influences on heart rate variability. J Electrocardiol. 1996; 29 (Suppl): 154-60. https://www.ncbi.nlm.nih.gov/pubmed/9238392
  123. Wagner CD, Persson PB. Two ranges in blood pressure power spectrum with different 1/f characteristics. Am J Physiol. 1994; 267 (2/Pt 2): H449-54.
  124. Wiesenack C, Fiegl C, Keyser A, Prasser C, Kell C. Assessment of fluid responsiveness in mechanically ventilated cardiac surgical patients. Eur J Anaesth. 2005; 22: 658-65. https://doi.org/10.1017/S0265021505001092