ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 40 of 45
Up
УЖМБС 2023, 8(1): 273–278
https://doi.org/10.26693/jmbs08.01.273
Biology

Dynamics of Changes in the Content of Cadmium and Nitrate Ion Compounds in the Ecosystem of the Ciscarpathia

Nechytailo L. Ya., Danyliv S. I., Shkurashkivska S. V., Kuras L. D.
Abstract

The purpose of the study was to form an algorithm for constant control of the content of cadmium and nitrate ions as an important component of environmental monitoring in the Ciscarpathia ecosystem. Materials and methods. The soils and drinking water of the plain, foothill and mountainous areas of the region were the object of research. The cadmium content was determined by atomic absorption spectrophotometry on a C-115 PC spectrophotometer. The concentration of nitrate ions in drinking water was determined potentiometrically using an ion-selective electrode. Results and discussion. The Ciscarpathia is a unique region of Ukraine with rich natural resources, diverse flora and fauna. At the same time, more than 500 industrial enterprises (more than 4% of the total area) of the chemical, energy, oil and gas, woodworking and other industries are located in the region. These enterprises cause a significant man-made load on all components of the natural environment. The ecological situation of the Ciscarpathian region is closely related to the state of soils and water resources. In this regard, it is appropriate to study and control the level of cadmium and nitrate compounds in the environment of the region. The study of the soils of the Carpathian region confirmed the growth of the cadmium toxic element, the content of which was by 1.3–1.5 times higher than the background indicators. It is determined that the level of nitrate ions in the drinking water of the plain zone exceeds the maximum permissible concentration by 1.5–2 times, and the physiological water completeness indicator – by 160–606 times; in the foothills and mountain zones the content of nitrates does not exceed the maximum permissible concentration, but it is by 35−253 times higher than the physiological water completeness indicator. The main stages of entry and accumulation of cadmium in the plant body have been analyzed. Conclusion. The results of our research made it possible to establish significant differences in the content of cadmium and nitrate ions in the soils and drinking water of different geographical zones of the Carpathian region. In particular, a significant number of the population living in the plains and foothills consumes water with a high content of nitrate ions and cadmium, which leads to an increase in the combined effect of these toxicants on living organisms. It is proposed to carry out constant monitoring of the level of toxicants in the ecosystem as an important component of environmental monitoring. The use of cultivated plants is recommended for cleaning the soil from cadmium contamination

Keywords: water, soil, plants, nitrates, cadmium, microelements, phytotoxicity

Full text: PDF (Ukr) 284K

References
  1. Shevchuk VD, Mudrak GV, Franchuk MO. Ekologichna otsinka intensyvnosti zabrudnennya gruntiv vazhkymy metalamy [Ecological assessment of the intensity of soil pollution by heavy metals]. Agricultural sciences. Colloquium-Journal. 2021;10(97):40-46. [Ukrainian]. https://doi.org/10.24412/2520-6990-2021-1097-40-46
  2. Gutsol GV. Otsinka intensivnosti zabrudnennya gruntiv vazhkimi metalami ta zakhodi shchodo pidvishchennya yikh yakosti [Assessment of the intensity of soil contamination by heavy metals and measures to improve their quality]. Sci Heritage. 2020;48:3-8. [Ukrainian]
  3. Makarenko N, Plyatsuk L. Ekologichni naslidki zabrudnennya gruntiv kadmiyem [Environmental consequences of soil contamination with cadmium]. Sustainable development - state and prospect. 3nd International scientific symposium; Ukraine, Lviv-Slavske; 2022 Jan 26-29. 2022. p. 30-31. [Ukrainian]. https://doi.org/10.51500/7826-15-5
  4. Naumenko AS, Kostenko OV, Lisenko DV. Suchasniy stan zabrudnennya spolukami kadmiyu ta svintsyu na zemlyakh silskogospodarskogo priznachennya [The current state of contamination with cadmium and lead compounds on agricultural lands]. Okhorona gruntiv. 2020;10:164-168. [Ukrainian]. https://doi.org/10.15421/2020_276
  5. Slobodyan SO, Gutiy BV. Stan antioksidantnoyi sistemi organizmu shchuriv za umovi trivalogo kadmiyevogo i svintsevogo navantazhennya [The state of the antioxidant system of the rat body under conditions of long-term cadmium and lead exposure]. Visnik Poltavskoyi derzhavnoyi agrarnoyi akademiyi. 2020;1:196-201. [Ukrainian]. https://doi.org/10.31210/visnyk2020.01.24
  6. Khomenchuk VO, Senik YuI, Kurant VZ. Osoblivosti transportu tsinku i kadmiyu cherez membrani eritrotsitiv za diyi pidvishchenikh kontsentratsiy yikh ioniv u vodi [Peculiarities of zinc and cadmium transport through erythrocyte membranes under the influence of increased concentrations of their ions in water]. Nauk Zap Ternop Nats Ped Un-Tu. Seriya Biol. 2021;81(1-2):31-38. [Ukrainian]. https://doi.org/10.25128/2078-2357.21.1-2.4
  7. Chorna VI, Voroshylova NV, Syrovatko VA. Cadmium distribution in soils of Dnipropetrovsk oblast and its accumulation in crop production [Distribution of cadmium in soils of the Dnipropetrovsk region and its accumulation in crop production]. Ukr J Ecolog. 2018;8(1):910-917. [Ukrainian]. https://doi.org/10.15421/2018_293
  8. Zemlyaniy OA, Gerasimchuk PG, Zaytsev LO, Mionchinskiy DO, Kharchenko OI, Samoylenko II, Aleksyeyenko VV, Shemet SA. Mnozhinni efekti khronichnogo nizkodozovogo vplivu kadmiyu na pechinku, osteogenez ta gemopoez tvarin i lyudini [Multiple Effects of Chronic Low-Dose Cadmium Exposure on the Liver, Osteogenesis, and Hematopoiesis in Animals and Humans]. Ukr Zh Med Biol Sportu. 2021;6(5/33):364-400. [Ukrainian]. https://doi.org/10.26693/jmbs06.05.394
  9. Hill A, Gailer J. Linking molecular targets of Cd in the bloodstream to organ-based adverse health effects. J Inorg Biochem. 2020;216:111279. PMID: 33413916. https://doi.org/10.1016/j.jinorgbio.2020.111279
  10. Đukić-Ćosić D, Baralić K, Javorac D, Djordjevic AB, Bulat Z. An overview of molecular mechanisms in cadmium toxicity. Curr Opin Toxicol. 2020;19:56-62. https://doi.org/10.1016/j.cotox.2019.12.002
  11. Valerko RA, Gerasymchuk LO, Zozulya VM. Otsinka ryzyku spozhyvannya pytnoyi vody z pidvyshchenym vmistom nitrativ na zdorov'ya naselennya Zhytomyrskoyi ob'yednanoyi terytorialnoyi gromady [Assessment of the risk of consumption of drinking water with an increased content of nitrates on the health of the population of the Zhytomyr United Territorial Community]. Ekologichni Nauky. 2021;3(36):137-141. [Ukrainian]. https://doi.org/10.32846/2306-9716/2021.eco.3-36.22
  12. Vergolyas MR. Otsinka toksychnosti nitrativ u vodi z vykorystannyam tsytomorfologichnykh pokaznykiv test-organizmiv [Assessment of nitrate toxicity in water using cytomorphological indicators of test organisms]. Ekologichni Nauky. 2020;3(30):129-132. [Ukrainian]. https://doi.org/10.32846/2306-9716/2020.eco.3-30.22
  13. Lototska OV, Danchyshyn MV. Zminy pokaznykiv bilkovogo obminu v organizmi shchuriv za umov spozhyvannya pytnoyi vody z vmistom nitrativ ta soley zhorstkosti [Changes in indicators of protein metabolism in the body of rats under conditions of consumption of drinking water containing nitrates and hardness salts]. Medychna ta Klinichna Khimiya. 2021;23(4):64-68. [Ukrainian]. doi 10.11603/mcch.2410-681X.2021.i4.12739
  14. Solovey V, Polupan M. DSTU 4287:2004 Yakist gruntu. Vidbyrannya prob [Soil quality. Sampling of samples]. K: Derstandart Ukrayiny; 2005. 13 s. [Ukrainian]
  15. DSanPiN 2.2.4-171-10 «Gigiyenichni vymogy do vody pytnoyi, pryznachenoyi dlya spozhyvannya lyudynoyu» [Hygienic rinses for drinking water intended for human consumption]. [Ukrainian]. Available from: http: //zakon3.rada.gov.ua/laws/show/z0452-10
  16. Lipka A, Lisenko M, Miroshnichenko M. DSTU 4770.6:2007. Yakist gruntu. Viznachennya vmistu rukhomikh spoluk midi v buferniy amoniyno-atsetatniy vityazhtsi z rN 4,8 metodom atomno–absorbtsiynoyi [Soil quality. Determination of the content of mobile copper compounds in the buffered ammonium acetate extract with pH 4.8 by the atomic absorption method]. K: Derzhstandart Ukrayiny; 2009. 18 s. [Ukrainian]
  17. Roman LIu. Assessment of water quality of natural mineral springs of the Svalyava district of the Transcarpathian region. Naukovyi visnyk Uzhhorodskoho universytetu. Seriia Khimiia. 2016;1(35):78−83. [Ukrainian]
  18. Snitinskiy VV, Smal OV. Vmist vazhkikh metaliv u gruntakh nasadzhen riznogo funktsionalnogo znachennya zelenoyi zoni m. Lvova [The content of heavy metals in the soils of plantations of different functional importance in the green zone of the Lviv]. Peredgirne ta Girske Zemlerobstvo i Tvarinnitstvo. 2016;60:131-138. [Ukrainian]
  19. Shevchuk VD., Mudrak GV., Franchuk MO. Ekologichna otsinka intensivnosti zabrudnennya gruntiv vazhkimi metalami [Ecological assessment of the intensity of soil pollution by heavy metals]. Colloquium-Journal. 2021;10(97):40-46. [Ukrainian]. https://doi.org/10.24412/2520-6990-2021-1097-40-46
  20. Kovalova SP, Mozharivska IA. Kontsentratsiya vazhkikh metaliv u grunti pri viroshchuvanni energetichnikh kultur na teritoriyi radioaktivnogo zabrudnennya [The concentration of heavy metals in the soil during the cultivation of energy crops in the territory of radioactive contamination]. Naukovi Horizonty. 2020;3(88):121-126. [Ukrainian]. https://doi.org/10.33249/2663-2144-2020-88-3-121-126
  21. Adamenko OM, Prykhodko MM. Regionalna ekologiya i pryrodni resursy [Regional ecology and natural resources]. Ivano-Frankivsk: Vydavnytstvo «Talya»; 2000. 278 s. [Ukrainian]
  22. Penderetskyy OV. Ekologiya Galytskogo rayonu [Ecology of Halytsky district]. Monografiya. Za red OM Adamenka. Ivano-Frankivsk; 2004. 198 s. [Ukrainian]
  23. Goncharuk V, Kushchevska N, Terletska G. Kontrol yakosti vody. Novi derzhavni standarty vyznachennya toksykologichnykh pokaznykiv [Water quality control. Novi derzhavni standarty vyznachennya toksykologichnykh pokaznykiv]. Standartyzatsiya. Setryfikatsiya. Yakist. 2012;5:63-70. [Ukrainian]
  24. Nikitina SV, Vukolova SI, Sholoyko SM, Goliyad RO. Ponyattya pro fiziologichnu povnotsinnu vodu yak skladovu ekologichnoyi osvity vchyteliv khimiyi [The concept of physiological adequacy of water as a component of environmental education of a chemistry teacher]. Naukovyy visnyk NLTU Ukrayiny. 2009;19(6):65-70. [Ukrainian]
  25. Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, et al. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol Environ Saf. 2021;211:1118-1140. PMID: 33450535. https://doi.org/10.1016/j.ecoenv.2020.111887
  26. Zhao H, Guan J, Liang Q, Zhang X, Hu H, Zhang J. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Nature portfolio. Sci Rep. 2021;11:9913-9924. https://doi.org/1010.1038/s41598-021-89322-0
  27. Nedjimi B. Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Appl Sci. 2021;3:286-306. https://doi.org/10.1007/s42452-021-04301-4
  28. Anas M, Liao F, Verma KK, Sarwar MA, Mahmood A, Chen ZL, et al. Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol Res. 2020;53:47-67. PMID: 33066819. PMCID: PMC7565752. https://doi.org/10.1186/s40659-020-00312-4
  29. Lebrazi S, Benbrahim KF. Rhizobium-Legume Symbioses: Heavy Metal Effects and Principal Approaches for Bioremediation of Contaminated Soil. In book: Legumes for Soil Health and Sustainable Management. 2018. р. 205-233. https://doi.org/10.1007/978-981-13-0253-4_7
  30. Liu W, Zhang X, Liang L, Chen C, Wei S, Zhou Q. Phytochelatin and Oxidative Stress Under Heavy Metal Stress Tolerance in Plants (Chapter). In: DK Gupta et al., Eds. Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. 2015. p. 191-219. doi:1 0.1007/978-3-319-20421-58
  31. Tognetti PM, Proberb SM, Báezc S, Chaneton EJ, Firn J, Risch AC, et al. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. PNAS. 2021;118(28):811-8. PMID: 34260386. PMCID: PMC8285913. doi:10.1073/pnas.2023718118