ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 3 of 59
Up
УЖМБС 2020, 5(5): 28–34
https://doi.org/10.26693/jmbs05.05.028
Medicine. Reviews

Periodontal Destruction and Regeneration in Experimental Models: Combined Research Approaches

Kordiyak Olena J.
Abstract

Chronic periodontitis is a common dental disease, resulting in destruction of gingival tissue, periodontal ligament, cementum, alveolar bone and, consequently- teeth loss in the adult population. Experimental animal models have enabled the study of periodontal disease pathogenesis and are used to test new therapeutic approaches for treating the disease The purpose of this review study was to draw the evidence from animal models, required for future assessment of destructional and regenerative processes in periodontal tissues. Material and methods: a rat experimental periodontitis models of ligature, streptozotocin, and immune complexes induced periodontitis, periodontal defect, altered functional loading, stress exposures and surgically created chronic acid reflux esophagitis models. Histomorphomorphological/-metrical, immunohisto (-cyto)chemical and histopathological analysis, micro-computed tomography, scanning and transmission electron microscopy, polarizing light and confocal microscopy, spectrophotometry, radiographic and biomechanical analysis, descriptive histology and computer-assisted image analysis. Results and discussion. Scaling and root planing may not always be effective in preventing periodontal disease progression, and, moreover, with currently available therapies, full regeneration of lost periodontal tissues after periodontitis cannot be achieved. However, in 70.5% of the results of experimental studies reported, irrespective of the defect type and animal model used, beneficial outcome for periodontal regeneration after periodontal ligament stem cell implantation, including new bone, new cementum and new connective tissue formation, was recorded. Therefore, platelet-rich fibrin combined with rat periodontal ligament stem cells provides a useful instrument for periodontal tissue engineering. Conclusion. There is sufficient evidence from preclinical animal studies suggesting that periodontal tissue engineering would provide a valuable tool for periodontal regeneration. Further elaboration of the developed in preclinical studies experimental techniques should justify progress to clinical studies and subsequent medical application

Keywords: periodontal disease, experimental animal models, tissue engineering

Full text: PDF (Ua) 282K

References
  1. Marchesan J, Girnary MS, Jing L, Miao MZ, Zhang S, Sun L, et al. An experimental murine model to study periodontitis. Nat Protoc. 2018; 13(10): 2247-2267. https://doi.org/10.1038/s41596-018-0035-4 PMid:30218100 PMCid:PMC6773250
  2. Dağ A, Fırat ET, Uysal E, Ketani MA, Şeker U. Morphological Changes Caused by Streptozotocin-Induced Diabetes in the Healthy Gingiva of Rats. Exp Clin Endocrinol Diabetes. 2016; 124(3): 167-72. https://doi.org/10.1055/s-0035-1559781 PMid:26372845
  3. Ortug G, Ignak S, Ortug A. Characteristics of lingual papillae in diabetic rats. Morphologie. 2018; 102(339): 250-254. https://doi.org/10.1016/j.morpho.2018.08.003 PMid:30219545
  4. Zheng B, Jiang J, Chen Y, Lin M, Du Z, Xiao Y, et al. Leptin Overexpression in Bone Marrow Stromal Cells Promotes Periodontal Regeneration in a Rat Model of Osteoporosis. J Periodontol. 2017; 88(8): 808-818. https://doi.org/10.1902/jop.2017.170042 PMid:28440742
  5. Zuza EP, Garcia VG, Theodoro LH, Ervolino E, Favero LFV, Longo M, et al. Influence of obesity on experimental periodontitis in rats: histopathological, histometric and immunohistochemical study. Clin Oral Investig. 2018; 22(3): 1197-1208. https://doi.org/10.1007/s00784-017-2207-y PMid:28929308
  6. Santos CF, Morandini AC, Dionísio TJ, Faria FA, Lima MC, Figueiredo CM, et al. Functional Local Renin-Angiotensin System in Human and Rat Periodontal Tissue. PLoS One. 2015; 10(8): e0134601. https://doi.org/10.1371/journal.pone.0134601 PMid:26244896 PMCid:PMC4526652
  7. Konermann A, Jäger A, Held SAE, Brossart P, Schmöle A. In vivo and In vitro Identification of Endocannabinoid Signaling in Periodontal Tissues and Their Potential Role in Local Pathophysiology. Cell Mol Neurobiol. 2017; 37(8): 1511-1520. https://doi.org/10.1007/s10571-017-0482-4 PMid:28289947
  8. Bright R, Hynes K, Gronthos S, Bartold PM. Periodontal ligament-derived cells for periodontal regeneration in animal models: a systematic review. J Periodontal Res. 2015; 50(2): 160-72. https://doi.org/10.1111/jre.12205 PMid:24965968
  9. Duan X, Lin Z, Lin X, Wang Z, Wu Y, Ji M, et al. Study of platelet-rich fibrin combined with rat periodontal ligament stem cells in periodontal tissue regeneration. J Cell Mol Med. 2018; 22(2): 1047-1055. https://doi.org/10.1111/jcmm.13461
  10. Han Y, Wang X, Ma D, Wu X, Yang P, Zhang J. Ipriflavone promotes proliferation and osteogenic differentiation of periodontal ligament cells by activating GPR30/PI3K/AKT signaling pathway. Drug Des Devel Ther. 2018; 12: 137-148. https://doi.org/10.2147/DDDT.S148457 PMid:29391778 PMCid:PMC5768194
  11. Yu X, Li L, Zhang J, Zhang T, Xiao C, Li S. Expression of neuropeptides and bone remodeling-related factors during periodontal tissue regeneration in denervated rats. J Mol Histol. 2015; 46(2): 195-203. https://doi.org/10.1007/s10735-015-9611-x PMid:25663522
  12. Alves A, Attik N, Wirth C, Bayon Y, Piat A, Grosgogeat B, Gritsch K. Cellular and collagen reference values of gingival and periodontal ligament tissues in rats: a pilot study. Histochem Cell Biol. 2019; 152(2): 145-153. https://doi.org/10.1007/s00418-019-01789-1 PMid:31144029
  13. deOliveira PG, Silveira E Souza AM, Novaes AB Jr, Taba M Jr, Messora MR, et al. Adjunctive effect of antimicrobial photodynamic therapy in induced periodontal disease. Animal study with histomorphometrical, immunohistochemical, and cytokine evaluation. Lasers Med Sci. 2016; 31(7): 1275-83. https://doi.org/10.1007/s10103-016-1960-5 PMid:27351664
  14. Babo PS, Cai X, Plachokova AS, Reis RL, Jansen J, Gomes ME, Walboomers XF. Evaluation of a platelet lysate bilayered system for periodontal regeneration in a rat intrabony three-wall periodontal defect. J Tissue Eng Regen Med. 2018; 12(2): e1277-e1288. https://doi.org/10.1002/term.2535 PMid:28834387
  15. Araújo AA, Pereira ASBF, Medeiros CACX, Brito GAC, Leitão RFC, Araújo LS, et al. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS One. 2017; 12(8): e0183506. https://doi.org/10.1371/journal.pone.0183506 PMid:28847008 PMCid:PMC5573680
  16. Belluci MM, de Molon RS, Rossa C Jr, Tetradis S, Giro G, Cerri PS, et al. Severe magnesium deficiency compromises systemic bone mineral density and aggravates inflammatory bone resorption. J Nutr Biochem. 2020; 77: 108301. https://doi.org/10.1016/j.jnutbio.2019.108301 PMid:31825817
  17. Çalışır M, Akpınar A, Poyraz Ö, Göze F, Çınar Z. The histopathological and morphometric investigation of the effects of systemically administered humic acid on alveolar bone loss in ligature-induced periodontitis in rats. J Periodontal Res. 2016; 51(4): 499-507. https://doi.org/10.1111/jre.12329 PMid:26547279
  18. Sousa LH, Moura EV, Queiroz AL, Val D, Chaves H, Lisboa M, et al. Effects of glucocorticoid-induced osteoporosis on bone tissue of rats with experimental periodontitis. Arch Oral Biol. 2017; 77: 55-61. https://doi.org/10.1016/j.archoralbio.2017.01.014 PMid:28178585
  19. Yang X, Zhang H, Wang J, Zhang Z, Li C. Puerarin decreases bone loss and collagen destruction in rats with ligature-induced periodontitis. J Periodontal Res. 2015; 50(6): 748-57. https://doi.org/10.1111/jre.12261 PMid:25645818
  20. Gomes MF, da Graças VGM, Giannasi LC, Hiraoka CM, de Fátima SMG, de Sousa AGV, et al. Effects of the GaAlAs diode laser (780 nm) on the periodontal tissues during orthodontic tooth movement in diabetes rats: histomorphological and immunohistochemical analysis. Lasers Med Sci. 2017; 32(7): 1479-1487. https://doi.org/10.1007/s10103-017-2268-9 PMid:28674791
  21. Nunes NLT, Messora MR, Oliveira LF, Lisboa M, Garcia MCB, Rêgo RO, et al. Effects of local administration of tiludronic acid on experimental periodontitis in diabetic rats. J Periodontol. 2018 Jan; 89(1): 105-116. https://doi.org/10.1902/jop.2017.170228 PMid:28914593
  22. Noguchi S, Ukai T, Kuramoto A, Yoshinaga Y, Nakamura H, Takamori Y, et al. The histopathological comparison on the destruction of the periodontal tissue between normal junctional epithelium and long junctional epithelium. J Periodontal Res. 2017; 52(1): 74-82. https://doi.org/10.1111/jre.12370 PMid:26957231
  23. Jara CM, Hartmann RC, Böttcher DE, Souza TS, Gomes MS, Figueiredo JAP. Influence of apical enlargement on the repair of apical periodontitis in rats. Int Endod J. 2018; 51(11): 1261-1270. https://doi.org/10.1111/iej.12949 PMid:29737545
  24. Denes BJ, Bresin A, Kiliaridis S. The influence of altered functional loading and posterior bite-blocks on the periodontal ligament space and alveolar bone thickness in rats. Acta Odontol Scand. 2016; 74(7): 518-524. https://doi.org/10.1080/00016357.2016.1211316 PMid:27462822
  25. Kolesnikova LR, Darenskaya MA, Kolesnikova LI, Grebenkina LA, Korytov LI, Batoroev YK, et al. Changes in the Periodontium and Pulp in ISIAH Rats Caused by Stress Exposures in Different Modes. Bull Exp Biol Med. 2019; 166(6): 722-725. https://doi.org/10.1007/s10517-019-04426-y PMid:31020583
  26. Shimazu R, Yamamoto M, Minesaki A, Kuratomi Y. Dental and oropharyngeal lesions in rats with chronic acid reflux esophagitis. Auris Nasus Larynx. 2018; 45(3): 522-526. https://doi.org/10.1016/j.anl.2017.08.011 PMid:28882408
  27. Bazikyan EA, Syrnikova NV, Chunikhin AA, Zayratyants OV. [Morphological evaluation of singlet phototherapy in the treatment of periodontal diseases in an experimental study]. Stomatologiia. 2018; 97(1): 22-26. [Russian]. https://doi.org/10.17116/stomat201897122-26 PMid:29465071
  28. Liu Z, Liu L, Kang C, Xie Q, Zhang B, Li Y. Effects of estrogen deficiency on microstructural changes in rat alveolar bone proper and periodontal ligament. Mol Med Rep. 2015; 12(3): 3508-3514. https://doi.org/10.3892/mmr.2015.3891 PMid:26044123
  29. Regueira LS, Marcelos PG, Santiago-Jaegger IM, Perez DE, Evêncio J Neto, Baratella-Evêncio L. Fluoxetine effects on periodontogenesis: histomorphometrical and immunohistochemical analyses in rats. J Appl Oral Sci. 2017; 25(2): 159-167. https://doi.org/10.1590/1678-77572015-0564 PMid:28403356 PMCid:PMC5393536
  30. Saglam E, Alinca SB, Celik TZ, Hacisalihoglu UP, Dogan MA. Evaluation of the effect of topical and systemic ozone application in periodontitis: an experimental study in rats. J Appl Oral Sci. 2019; 28: e20190140. https://doi.org/10.1590/1678-7757-2019-0140 PMid:31800874 PMCid:PMC6886394
  31. Köse O, Arabaci T, Kizildag A, Erdemci B, Özkal ED, Gedikli S, et al. Melatonin prevents radiation-induced oxidative stress and periodontal tissue breakdown in irradiated rats with experimental periodontitis. J Periodontal Res. 2017; 52(3): 438-446. https://doi.org/10.1111/jre.12409 PMid:27510437
  32. Hasegawa T, Miyamoto-Takasaki Y, Abe M, Qiu Z, Yamamoto T, Yoshida T, et al. Histochemical examination on principal collagen fibers in periodontal ligaments of ascorbic acid-deficient ODS-od/od rats. Microscopy (Oxf). 2019; 68(5): 349-358. https://doi.org/10.1093/jmicro/dfz021 PMid:31271212