ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 30 of 67
Up
УЖМБС 2020, 5(3): 228–236
https://doi.org/10.26693/jmbs05.03.228
Clinical Medicine

Theoretical Substantiation of Personalized (Target) Therapy of Testicular Germ Cell Tumors

Potapov S. M., Gorgol N. I., Pliten O. M., Halata D. I.
Abstract

Despite the achievements of modern medicine, morbidity and mortality of testicular germ cell tumors stand at the head among oncological pathologies in young men. One of the many reasons of unsatisfactory treatment results in particular patients with testicular germ cell tumors is the lack of personalized approach, which is based on studies of molecular biological markers expression, determination of prognosis factors and treatment tactics. The purpose of the study was the theoretical justification of personalized (target) therapy of testicular germ cell tumors based on the investigation of molecular biological markers characterizing proliferative and apoptotic processes, the state of extracellular matrix, intercellular adhesion, tumor angiogenesis and immunological properties of the tumor. Material and methods. The study was performed on 54 observations of testicular germ cell tumors. All tumors were sorted by kind of histological structure and in accordance with the pTNM classification. Following groups were formed: «0» (tumors of the stage T1N0S0), «1» (tumors of the stages T1N0S0-2), «2» (tumors of the stages T2N1-3S0-2), «3» (tumors of the stages T3N1-3S0-2), «4» (tumors of the stages T2-3N0-3S0-2). According to standard immunohistochemical methods the expression of markers characterizing proliferative and apoptotic processes (Ki-67, Bax, Bcl-2 and p53), the state of intercellular adhesion (E-cadherin and β-catenin), extracellular matrix (MMP-1, MMP-3, MMP-9 and TIMP-1), tumor angiogenesis (CD31 and CD34) and tumor immunological properties (PDL-1) were studied. Results and discussion. On the basis of performed research of the mentioned markers expression in various histological types of testicular germ cell tumors and described in literature achievements of target therapy tactics in patients with tumors of other localizations, the theoretical substantiation of its expediency in patients with testicular germ cell tumors was made. We suggested that anti-angiogenic drugs, drugs that block metalloproteinases and molecules responsible for cell division, as well as drugs that stimulate apoptosis and remove mutated cells, can be used in target therapy of testicular germ cell tumors. Among the perspective targets may be therapeutic antibodies which activate antitumor immunity. Conclusion. Investigation of molecular biological markers expression is important for a more efficient staging of cancer and predicting of a patient survival. The elaboration and investigation of the effects of compounds for target therapy of testicular germ cell tumors is a promising area of modern oncology. We believe that combination of mentioned drugs with traditional medicinal standards can significantly increase the effectiveness of testicular germ cell tumors treatment.

Keywords: testicular germ cell tumors, personalized (target) therapy

Full text: PDF (Ukr) 248K

References
  1. Ymyanytov EN. Epydemyologyya y byologyya germynogennykh opukholey [Epidemiology and biology of germinal cell tumors]. Practical oncology. 2006; 7(1): 1-5. [Russian]
  2. Chekhun VF. Ot systemnoy byologyy raka do metodologyy personalyzyrovannogo lechenyya [From system biology of cancer to methodology of personalized treatment]. Oncology. 2012; 14(2): 84-8. [Russian]
  3. Nallu A, Mannuel HD, Hussain A. Testicular germ cell tumors: biology and clinical update. Curr Opin Oncol. 2013 May; 25(3): 266-72. https://www.ncbi.nlm.nih.gov/pubmed/23549473. https://doi.org/10.1097/CCO.0b013e32835ff3e3
  4. Ymyanytov E.N. Pryntsypy yndyvydualyzatsyy protyvoopukholevoy terapyy [Principles of individualization of antitumor therapy]. Practical oncology. 2013; 14(4): 187-94. [Russian]
  5. Jain KK. Personalized medicine. Curr Opin Mol Ther. 2002 Dec; 4(6): 548-58.
  6. Snegovoy AV, Manzyuk LV. Znachenye byomarkerov dlya opredelenyya taktyky lechenyya y prognoza zlokachestvennykh opukholey [The importance of biomarkers for determining treatment tactics and prognosis of malignant tumors]. Practical oncology. 2011; 12(4): 166-70. [Russian]
  7. Weinberg RA. The biology of cancer. NY: Garland Science; 2007. 794 p.
  8. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur Urol. 2016 Jul; 70(1): 93-105. https://www.ncbi.nlm.nih.gov/pubmed/26935559. https://doi.org/10.1016/j.eururo.2016.02.029
  9. Lobo J, Costa AL, Vilela-Salgueiro B, Rodrigues Â, Guimarães R, Cantante M, et al. Testicular germ cell tumors: revisiting a series in light of the new WHO classification and AJCC staging systems, focusing on challenges for pathologists. Hum Pathol. 2018 Dec; 82: 113-24. https://www.ncbi.nlm.nih.gov/pubmed/30041024. https://doi.org/10.1016/j.humpath.2018.07.016
  10. Khlebnikova AN, Novoselova NV. Osobennosty angyogeneza v ochagakh bazalnokletochnogo raka kozhy [Particular features of angiogenesis in lesions in patients suffering from basal cell epithelioma]. Vestnik Dermatologii i Venerologii. 2014; 3: 60-4. [Russian]
  11. Patent 119922 Ukraine. Sposib kilkisnoi otsinky rivnia svitlosti ta vidnosnoi ploshchi ekspresii markeriv pry imunohistokhimichnomu doslidzhenni tkanyn / Potapov SM, Markovskiy VD, KulIshova NE, (UA); zayavnik i vlasnik patentu Kharkivskyi natsionalnyi medychnyi universytet, patentovlasnyk (UA). zayavl 27.09.2019
  12. Kobzar AI. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnyih rabotnikov. FIZMATLIT, 2012. 816 p. Available from: http://www.studentlibrary.ru/book/ISBN9785922113755.html
  13. Kontzoglou K, Palla V, Karaolanis G, Karaiskos I, Alexiou I, Pateras I, et al. Correlation between Ki67 and breast cancer prognosis. Oncology. 2013; 84(4): 219-25. https://www.ncbi.nlm.nih.gov/pubmed/23364275. https://doi.org/10.1159/000346475
  14. Paik S. Is gene array testing to be considered routine now? Breast. 2011 Oct; 20(Suppl 3): S87-91. https://doi.org/10.1016/S0960-9776(11)70301-0
  15. Potapov SM, Markovskyi VD, Galata DI, Pliten OM, Gorgol NI. Imunogistokhimichna kharakterystyka proliferatyvno-apoptotychnykh protsesiv v seminomi yayechka [Immunohistochemical characteristic of proliferative and apoptotic processes in testicular seminoma]. Morphologia. 2019; 3(13): 107-14. [Ukrainian] https://doi.org/10.26641/1997-9665.2019.3.107-114
  16. Potapov SM, Pliten OM, Halata DI, Sidorenko RV, Andreev AV. Imunogistokhimichna kharakterystyka proliferatyvno-apoptotychnykh protsesiv v okremykh germinogennykh pukhlynakh yayechka [Immunohistochemical characteristic of proliferative and apoptotic processes in particular testicular germ cell tumors]. Bulletin of problems biology and medicine. 2019; 3(152): 325-31. [Ukrainian]
  17. Zozulya SA, Udovichenko IP. Retseptory semeystva Eph kak terapevtycheskye mysheny [Eph family receptors as therapeutic targets]. Russian Journal of Bioorganic Chemistry. 2012; 38(3): 267-79. [Russian] https://www.ncbi.nlm.nih.gov/pubmed/22997698. https://doi.org/10.1134/S106816201203017X
  18. Kushlinskiy DN, Tereshkina IV, Degtyar VG, Laktionov KP, Adamyan LV. Faktor rosta endoteliya sosudov i ego retseptory pri rake yaichnikov [Endothelial growth factor and its receptors in ovarian cancer]. Molecular medicine. 2013; 1: 3-11. [Russian]
  19. Ma WW, Adjei AA. Novel agents on the horizon for cancer therapy. CA Cancer J Clin. 2009 Mar-Apr; 59(2): 111-37. https://www.ncbi.nlm.nih.gov/pubmed/19278961. https://doi.org/10.3322/caac.20003
  20. Ma J, Waxman DJ. Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther. 2008 Dec; 7(12): 3670-84. https://www.ncbi.nlm.nih.gov/pubmed/19074844. https://www.ncbi.nlm.nih.gov/pmc/articles/2637411. https://doi.org/10.1158/1535-7163.MCT-08-0715
  21. Czabanka M, Vinci M, Heppner F, Ullrich A, Vajkoczy P. Effects of sunitinib on tumor hemodynamics and delivery of chemotherapy. Int J Cancer. 2009 Mar 15; 124(6): 1293-300. https://www.ncbi.nlm.nih.gov/pubmed/19101989. https://doi.org/10.1002/ijc.24019
  22. Levacheva I, Samsonova O, Tazina E, Beck-Broichsitter M, Levachev S, Strehlow B, et al. Optimized thermosensitive liposomes for selective doxorubicin delivery: formulation development, quality analysis and bioactivity proof. Colloids Surf B Biointerfaces. 2014 Sep 1; 121: 248-56. https://www.ncbi.nlm.nih.gov/pubmed/25001189. https://doi.org/10.1016/j.colsurfb.2014.02.028
  23. Fischer C, Mazzone M, Jonckx B, Carmeliet P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer. 2008 Dec; 8(12): 942-56. https://www.ncbi.nlm.nih.gov/pubmed/19029957. https://doi.org/10.1038/nrc2524
  24. Kolomeytseva AA, Stepanova EV, Gagarin IM, Rodnikova EG, Rzaev DS, Gorbunova VA, et al. Vlyyanye molekulyarno-byologycheskykh markerov na effektyvnost yngybytorov retseptora epydermalnogo faktora rosta u bolnykh rasprostranennym nemelkokletochnym rakom legkogo [The impact of molecular markers on efficacy of EGFR inhibitors in patients with non small-cell lung cancer]. Russian Journal of Biotherapy. 2011; 10(4): 9-12. [Russian].
  25. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009 Mar; 8(3): 235-53. https://www.ncbi.nlm.nih.gov/pubmed/19247306. https://www.ncbi.nlm.nih.gov/pmc/articles/3684054. https://doi.org/10.1038/nrd2792
  26. Ribatti D. Endogenous inhibitors of angiogenesis: a historical review. Leuk Res. 2009 May; 33(5): 638-44. https://www.ncbi.nlm.nih.gov/pubmed/19117606. https://doi.org/10.1016/j.leukres.2008.11.019
  27. Sounni NE, Paye A, Host L, Noël A. MT-MMPS as Regulators of Vessel Stability Associated with Angiogenesis. Front Pharmacol. 2011 May 13; 2: 111. https://www.ncbi.nlm.nih.gov/pubmed/21687519. https://www.ncbi.nlm.nih.gov/pmc/articles/3108474. https://doi.org/10.3389/fphar.2011.00111
  28. Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol. 2015 May-Jul; 44-46: 94-112. https://www.ncbi.nlm.nih.gov/pubmed/25912949. https://www.ncbi.nlm.nih.gov/pmc/articles/5079283. https://doi.org/10.1016/j.matbio.2015.04.004
  29. Fields GB. Mechanisms of Action of Novel Drugs Targeting Angiogenesis-Promoting Matrix Metalloproteinases. Front Immunol. 2019 Jun 4; 10: 1278. https://www.ncbi.nlm.nih.gov/pubmed/31214203. https://www.ncbi.nlm.nih.gov/pmc/articles/6558196. https://doi.org/10.3389/fimmu.2019.01278
  30. Gershtein ES, Kushlinskii NE. Klynycheskye perspektyvy yssledovanyya assotsyyrovannykh s opukholyu proteaz y ykh tkanevykh yngybytorov u onkologycheskykh bolnykh [Clinical prospects of tumor-associated proteases and their tissue inhibitors investigation in oncologic patients]. Annals of the Russian academy of medical sciences. 2013; 5: 16-27. [Russian] https://doi.org/10.15690/vramn.v68i5.659
  31. Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med. 2008 Oct; 29(5): 290-308. https://www.ncbi.nlm.nih.gov/pubmed/18619669. https://www.ncbi.nlm.nih.gov/pmc/articles/2810947. https://doi.org/10.1016/j.mam.2008.05.002
  32. Potapov SM, Halata DI, Pliten OM, Sidorenko RV, Andreev AV. Stan ekstratselyulyarnogo matryksu i mizhklitynnoyi adgeziyi v embrionalnomu raku yayechka [State of extracellular matrix and cell adhesion in testicular embryonal carcinoma]. Bulletin of problems biology and medicine. 2019; 4(153): 246-54. [Ukrainian]
  33. Potapov SM, Pliten OM, Halata DI, Kryvoshapka OV. Mizhklitynna adgeziya v germinogennykh pukhlynakh yayechka [Intercellular adhesion in testicular germ cell tumors]. Bukovinian Medical Herald. 2019; 23(4): 98-107. [Ukrainian] https://doi.org/10.24061/2413-0737.XXIII.4.92.2019.96
  34. Kandala PK, Srivastava SK. DIMming ovarian cancer growth. Curr Drug Targets. 2012 Dec; 13(14): 1869-75. https://www.ncbi.nlm.nih.gov/pubmed/23140296. https://doi.org/10.2174/138945012804545650
  35. Taylor-Harding B, Agadjanian H, Nassanian H, Kwon S, Guo X, Miller C, et al. Indole-3-carbinol synergistically sensitises ovarian cancer cells to bortezomib treatment. Br J Cancer. 2012 Jan 17; 106(2): 333-43. https://www.ncbi.nlm.nih.gov/pubmed/ 22166800. https://www.ncbi.nlm.nih.gov/pmc/articles/3261668. https://doi.org/10.1038/bjc.2011.546
  36. https://doi.org/10.1038/bjc.2011.546
  37. Ashrafyan LA, Kiselev VI, Muizhnek EL, Antonova IB, Kuznetsov IN, Aleshikova OI, et al. Rak yaychnykov: kontseptsyya patogeneza y pryntsypy terapyy [Ovarian cancer: pathogenesis concept and therapy principles]. PA Herzen Journal of Oncology. 2015; 3: 23-32. [Russian]
  38. Vartanyan AA. Molekulyarnyye mekhanizmy vaskulogennoy mimikrii pri zlokachestvennykh zabolevaniyakh. Abstr. PhDr. (Med.). M: Rossiyskiy onkologicheskiy nauchnyy tsentr imeni HH Blokhina; 2012. 39 s. [Russian]
  39. Vartanyan AA. Alternatyvnoe krovosnabzhenye v kostnom mozge pri onkogematologycheskykh zabolevanyyakh [Supplemental Blood Circulation System in Hematologic Malignancies]. Klin Onkogematol. 2014; 7(4): 491-500. [Russian]
  40. Kadagidze ZG, Chertkova AI. Immunnaya sistema i rak [Immunity and cancer]. Practical oncology. 2016; 17(2): 62-73. [Russian]
  41. Haworth KB, Leddon JL, Chen CY, Horwitz EM, Mackall CL, Cripe TP. Going back to class I: MHC and immunotherapies for childhood cancer. Pediatr Blood Cancer. 2015 Apr; 62(4): 571-6. https://www.ncbi.nlm.nih.gov/pubmed/25524394. https://www.ncbi.nlm.nih.gov/pmc/articles/4339346. https://doi.org/10.1002/pbc.25359
  42. Gabrielson A, Wu Y, Wang H, Jiang J, Kallakury B, Gatalica Z, et al. Intratumoral CD3 and CD8 T-cell Densities Associated with Relapse-Free Survival in HCC. Cancer Immunol Res. 2016 May; 4(5): 419-30. https://www.ncbi.nlm.nih.gov/pubmed/26968206. https://www.ncbi.nlm.nih.gov/pmc/articles/5303359. https://doi.org/10.1158/2326-6066.CIR-15-0110
  43. Li F, Zhu T, Yue Y, Zhu X, Wang J, Liang L. Preliminary mechanisms of regulating PD L1 expression in non small cell lung cancer during the EMT process. Oncol Rep. 2018 Aug; 40(2): 775-82. https://doi.org/10.3892/or.2018.6474
  44. Quezada SA, Peggs KS. Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer. Br J Cancer. 2013 Apr 30; 108(8): 1560-5. https://www.ncbi.nlm.nih.gov/pubmed/23511566. https://www.ncbi.nlm.nih.gov/pmc/articles/3668483. https://doi.org/10.1038/bjc.2013.117
  45. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014 Nov 27; 515(7528): 568-71. https://www.ncbi.nlm.nih.gov/pubmed/25428505. https://www.ncbi.nlm.nih.gov/pmc/articles/4246418. https://doi.org/10.1038/nature13954
  46. Mao Y, Li W, Chen K, Xie Y, Liu Q, Yao M, et al. B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. Oncotarget. 2015 Feb 20; 6(5): 3452-61. https://doi.org/10.18632/oncotarget.3097
  47. Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B, et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013 Mar 15; 73(6): 1733-41. https://www.ncbi.nlm.nih.gov/pubmed/23288508. https://www.ncbi.nlm.nih.gov/pmc/articles/3602406. https://doi.org/10.1158/0008-5472.CAN-12-2384
  48. Maine CJ, Aziz NH, Chatterjee J, Hayford C, Brewig N, Whilding L, et al. Programmed death ligand-1 over-expression correlates with malignancy and contributes to immune regulation in ovarian cancer. Cancer Immunol Immunother. 2014 Mar; 63(3): 215-24. https://www.ncbi.nlm.nih.gov/pubmed/24297569. https://doi.org/10.1007/s00262-013-1503-x
  49. Miyasato Y, Takashima Y, Takeya H, Yano H, Hayano A, Nakagawa T, et al. The expression of PD-1 ligands and IDO1 by macrophage/microglia in primary central nervous system lymphoma. J Clin Exp Hematop. 2018; 58(2): 95-101. https://www.ncbi.nlm.nih.gov/pubmed/29998979. https://www.ncbi.nlm.nih.gov/pmc/articles/6413151. https://doi.org/10.3960/jslrt.18001
  50. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013 Jul 25; 39(1): 1-10. https://www.ncbi.nlm.nih.gov/pubmed/23890059. https://doi.org/10.1016/j.immuni.2013.07.012
  51. He J, Huo L, Ma J, Zhao J, Bassett RL, Sun X, et al. Expression of Programmed Death Ligand 1 (PD-L1) in Posttreatment Primary Inflammatory Breast Cancers and Clinical Implications. Am J Clin Pathol. 2018 Feb 17; 149(3): 253-61. https://www.ncbi.nlm.nih.gov/pubmed/29425258. https://www.ncbi.nlm.nih.gov/pmc/articles/6322426. https://doi.org/10.1093/ajcp/aqx162
  52. Kushlinskii NE, Fridman MV, Morozov AA, Gershtein ES, Kadagidze ZG, Matveev V.B. Sovremennye podkhody k ymmunoterapyy raka pochky [Modern approaches to kidney cancer immunotherapy]. Cancer Urology. 2018; 14(2): 54-67. [Russian] https://doi.org/10.17650/1726-9776-2018-14-2-54-67
  53. Samoilenko IV, Demidov LV. Pembrolyzumab v lechenyy metastatycheskoy melanomy [Pembrolizumab in the treatment of metastatic melanoma]. Medical Council. 2017; 6: 8-23. [Russian] https://doi.org/10.21518/2079-701X-2017-6-8-23
  54. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013 Jul 11; 369(2): 134-44. https://www.ncbi.nlm.nih.gov/pubmed/23724846. https://www.ncbi.nlm.nih.gov/pmc/articles/4126516. https://doi.org/10.1056/NEJMoa1305133
  55. Avksentev NA, Frolov MYu, Makarov AS. Farmakoekonomycheskoe yssledovanye prymenenyya pembrolyzumaba y nyvolumaba vo vtoroy lynyy terapyy rasprostranennogo nemelkokletochnogo raka legkogo [Pharmacoeconomic study of pembrolizumab and nivolumab in the second line of therapy of advanced non-small cell lung cancer]. Effective Pharmacotherapy. 2019; 15(24): 38-46. [Russian] https://doi.org/10.33978/2307-3586-2019-15-24-38-46
  56. Chen DS, Irving BA, Hodi FS. Molecular pathways: next-generation immunotherapy-inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res. 2012 Dec 15; 18(24): 6580-7. https://www.ncbi.nlm.nih.gov/pubmed/23087408. https://doi.org/10.1158/1078-0432.CCR-12-1362
  57. Ashrafyan LA. Sporadycheskyy rak yaychnykov: veroyatnaya model patogeneza [Sporadic ovarian cancer: probable pathogenesis model]. Journal of Obstetrics and Female Diseases. 2012; 61(4): 3-10. [Russian] https://doi.org/10.17816/JOWD6143-10
  58. Khvastunov RA, Skrypnykova GV, Usachev AA. Targetnaya terapyya v onkologyy [Target therapy in oncology]. Lekarstvennyy vestnyk. 2014; 4(56): 3-10. [Russian]