ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 48 of 56
Up
УЖМБС 2018, 3(6): 304–309
https://doi.org/10.26693/jmbs03.06.304
Biology

Antimicrobial and Antioxidant Activity of Anthocyanin Complexes of Some Berries’ Species of Ukraine

Filimonova N. I.1, Gliebova K. V.1, Shakun O. A.1, Tishchenko I. Y.1, Bosenko O. L.1, Domarev A. P.2, Krichkovskaya L. V.2, Gorbach T. V.3
Abstract

The aim of the study was to determine the degree of antimicrobial activity of the anthocyanin complexes of Aronia melanocarpa (Aronia melanocarpa), black currant (Ribes nigrum), elderberry (Sambucus nigra) with reference culture Staphylococcus aureus ATCC 25923, Escherichia coli АТСС 25922, Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa АТСС 27853, Candida albicans NСTC 885-653. The highest degree of microbiological sensitivity of bacterial cultures Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa was observed in the native form of anthocyanin complexes derived from black currant (Ribes nigrum), Escherichia coli and Bacillus subtilis – to the anthocyanins in native form, derived from elder black (Sambucus nigra), which indicates their high antimicrobial activity against the microorganisms mentioned above. Reducing the concentration of anthocyanins in alcoholic extract at dilution in the ratio of 1:1 and 1:2 significantly decreased the microbiological sensitivity of microorganisms to them Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa. When surveying the effects of anthocyanin complexes from Aronia melanocarpa, Ribes nigrum, Sambucus nigra on Candida albicans fungi culture, no sensitivity was established, which indicates the absence of antimycotic activity of the above complexes in laboratory conditions in vitro.

Keywords: anthocyanin complexes, antimicrobial activity, Aronia melanocarpa, Ribes nigrum, Sambucus nigra, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans

Full text: PDF (Ua) 184K

References
  1. Borodina TN, Rumsh LD, Kunizhev SM, Sukhorukov GB, Vorozhtsov GN, Fel'dman BM, et al. Vklyucheniye ekstraktov lekarstvennykh rasteniy v biodegradiruyemyye mikrokapsuly [Entrapment of herbal extracts in biodegradable microcapsules]. Biomeditsinskaia Khimiia. 2007; 53(6): 662–71. [Russian]
  2. Licciardi PV, Underwood JR. Plant-derived medicines: a novel class of immunological adjuvants. International Immunopharmacol. 2011; 11(3): 390–8. https://www.ncbi.nlm.nih.gov/pubmed/21056709. https://doi.org/10.1016/j.intimp.2010.10.014
  3. Korepanov SV, Openko TG. Primeneniye lekarstvennykh rasteniy s immunomoduliruyushchimi svoystvami v onkologii [The medicinal plants with immunomodulating properties in oncology]. Rossiyskiy Bioterapevticheskiy Zhurnal. 2012; 4(11): 15–20. [Russian]
  4. Singh B, Sidiq T, Joshi, P, Jain SK, Lawaniya Y, Kichlu S, Khajuria A, Vishwakarma RA, Bharate SB. Anti-inflammatory and immunomodulatory flavones from Actinocarya tibetica Benth. Natural Product Research. 2013; 27(23), 2227–30. https://doi.org/10.1080/14786419.2013.805334
  5. Zulfugarova MB, Novruzov EN. Sostav i soderzhaniye antotsianov plodov Sambucus Ebulus L. [Composition and content of anthocyanins of fruits Sambucus Ebulus L.]. Khimiya rastitel'nogo syr'ya. 2017; 1: 163–7. https://doi.org/10.14258/jcprm.2017011422 [Russian]
  6. Barbaste M, Berké B, Dumas M, Soulet S, Delaunay JC, Castagnino C, Arnaudinaud V, Chèze C, Vercauteren J. Dietary antioxidants, peroxidation and cardiovascular risks. The Journal of Nutrition, Health & Aging. 2002; 6(3): 209–22. https://www.ncbi.nlm.nih.gov/pubmed/11887247
  7. Hou DX. Potential Mechanisms of Cancer Chemoprevention by Anthocyanins Current. Molecular Medicine. 2003; 3: 149–59. https://www.ncbi.nlm.nih.gov/pubmed/12630561. https://doi.org/10.1155/S1110724304403040
  8. Brewer MS. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety. 2011; 10: 221–46. https://doi.org/10.1111/j.1541-4337.2011.00156.x
  9. Rauha JP, Remes S, Heinonen M, Hopia A, Kähkönen M, Kujala T, et al. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology. 2000; 56(1): 3–12. https://www.ncbi.nlm.nih.gov/pubmed/10857921. https://doi.org/10.1016/S0168-1605(00)00218-X
  10. Proestos C, Chorianopoulos N, Nychas GJ, Komaitis M. RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. Journal of Agricultural and Food Chemistry. 2005; 53(4): 1190–5. https://www.ncbi.nlm.nih.gov/pubmed/15713039. https://doi.org/10.1021/jf040083t
  11. Glantz S. Mediko-biologicheskaya statistika [Medico-Biological Statistics]. Moskva: Praktika; 1998. 459 p. [Russian]
  12. Slimestad R, Solheim H. Anthocyanins from black currants (Ribes nigrum L.). Journal of Agricultural and Food Chemistry. 2002; 50(11): 3228–31. https://www.ncbi.nlm.nih.gov/pubmed/12009991. https://doi.org/10.1021/jf011581u
  13. Rudakov OB, Khairutdinova AD, Odin AP. Fraktsionnyy sostav antotsianovykh krasiteley iz rastitel'nykh ekstraktov i kontrol' nad nimi metodom vysokoeffektivnoy zhidkostnoy khromatografii (VEZHKH) [Fractional composition of anthocyanin dyes from plant extracts and control over them by the method of high-performance liquid chromatography (HPLC)]. Vestnik Voronezhskogo gosudarstvennogo universiteta: seriya «Khimiya. Biologiya. Farmatsiya». 2004; 1, 85–93. [Russian]
  14. Olas B, Wachowicz B, Nowak P, Kedzierska M, Tomczak A, Stochmal A, et al. Studies on antioxidant properties of polyphenol-rich extract from berries of aronia melanocarpa in blood platelets. Journal of physiology and pharmacology. 2008; 59: 823–35. https://www.ncbi.nlm.nih.gov/pubmed/19212014
  15. Veberic R, Jakopic J, Stampar F, Schmitzer V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry. 2009; 114: 511–5. https://doi.org/10.1016/j.foodchem.2008.09.080
  16. Cesonienė L, Daubaras R, Viškelis P, Sarkinas A. Determination of the total phenolic and anthocyanin contents and antimicrobial activity of Viburnum opulus fruit juice. Plant Foods for Human Nutrition. 2012; 67(3): 256–61. https://www.ncbi.nlm.nih.gov/pubmed/22865031. https://doi.org/10.1007/s11130-012-0303-3
  17. Ben Lagha A, Dudonné S, Desjardins Y, Grenier D. Wild Blueberry (Vaccinium angustifolium Ait.) Polyphenols Target Fusobacterium nucleatum and the Host Inflammatory Response: Potential Innovative Molecules for Treating Periodontal Diseases. Journal of Agricultural and Food Chemistry. 2015; 63(31): 6999–7008. https://www.ncbi.nlm.nih.gov/pubmed/26207764. https://doi.org/10.1021/acs.jafc.5b01525
  18. Handeland M, Grude N, Torp T, Slimestad R. Black chokeberry juice (Aronia melanocarpa) reduces incidences of urinary tract infection among nursing home residents in the long term – a pilot study. Nutrition Research (New York). 2014; 34(6): 518–25. https://www.ncbi.nlm.nih.gov/pubmed/25026919. https://doi.org/10.1016/j.nutres.2014.05.005
  19. Nikolaeva-Glomb L, Mukova L, Nikolova N, Badjakov I, Dincheva I, Kondakova V, et al. In vitro antiviral activity of a series of wild berry fruit extracts against representatives of Picorna-, Orthomyxo- and Paramyxoviridae. Natural Product Communications. 2014; 9(1): 51–4. https://www.ncbi.nlm.nih.gov/pubmed/24660461
  20. Lacombe A, Wu VC, White J, Tadepalli S, Andre EE. The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus. 2012; 30(1): 124–31. https://www.ncbi.nlm.nih.gov/pubmed/22265292. https://doi.org/10.1016/j.fm.2011.10.006