ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 33 of 41
Up
УЖМБС 2017, 2(1): 179–188
https://doi.org/10.26693/jmbs02.01.179
Biology

Single Nucleotide Polymorphisms G919A and A2039G of FSHR in Males with Severe Forms of Infertility

Zhylkova I.1,2, Yegunkova O.1, Feskov O.1, Fedota O.2
Abstract

The responsibility of male factor in couple’s infertility has been exponentially raised recently due to comprehensive evaluation of reproductive male function and improved diagnostic equipment. Despite this improvement in diagnosis, azoospermia is always the most challenging topic associated with infertility treatment. Several conditions that interfere with spermatogenesis and reduce sperm production and quality can lead to azoospermia. Azoospermia may also occur because of a reproductive tract obstruction. Optimal management of patients with azoospermia requires a full understanding of the disease etiology. Chromosomal disorders are encountered at a higher frequency in the infertile compared with the fertile population. These chromosome alterations can currently be diagnosed in 15% of azoospermic and 5% of oligospermic men and represent one of the most common genetic defects in infertile men. Therefore, it is important that these men undergo genetic testing prior to the use of their sperm for ART. The aim of the research was to investigate of polymorphic links of G919A and A2039G of FSHR with azoospermia in men. Materials and methods. During 2012-2016 information and biological samples of 1637 men with decreased infertility were analyzed. Microscopic analysis of ejaculate with parameters of fertility according to WHO from 2010 was done. Results. Analysis of genetic characteristics of men with various forms of azoospermia showed that 7.3% of patients were heterozygous for the CFTR gene mutations delF508 and all of them have obstructive form. Abnormalities in karyotype – 45, XY, rob(13; 21)(q10; q10), 46,XX, 47,XXY [18] / 46,XY [2]; 47,XXY – were found in 12.2% of patients. In the form of non-obstructive azoospermia the frequency of homozygotes GGAA, GGGG, AAAA is in 1.8-3.2 times higher than theoretically expected. The frequency of homozygous with wild type alleles GGAA is in 2.6 times higher than in controls. In men with non-obstructive azoospermia a direct correlation between the number of polymorphic alleles for the SNP G919A of FSHR gene and levels of follicle-stimulating hormone was found out, as rs = 0,49. The level of FSH in some patients with non-obstructive form is on the upper limit or higher comparing with normal values -19,07-33,42 mIU/mL, and in obstructive form FSH level is in the normal range. For obstructive azoospermia the actual frequency of heterozygotes GGGG, GAAG, AAAA is in 2-5,1, times higher than expected. GGAA homozygotes were not found in group of men with obstructive azoospermia. Conclusion. Thus, a precise diagnosis of azoospermia and systematic evaluation of the patient to establish the disease etiology is necessary to establish appropriate management options and to determine the associated cost benefits, risks and prognosis for treatment success. Clinicians should also provide adequate counseling for the couple and generous support for patients with severe male factor infertility.

Keywords: azoospermia, FSHR gene, FSH, G919A, A2039G

Full text: PDF (Ukr) 829K

References
  1. Krausz C, Chianese C. Genetic testing and counselling for male infertility. Curr Opin Endocrinol Diabetes Obes. 2014; 21: 244. https://doi.org/10.1097/MED.0000000000000058
  2. Ferlin A, Arredi B, Foresta C. Genetic causes of male infertility. Reproductive Toxicology. 2006; 22: 133–41. https://doi.org/10.1016/j.reprotox.2006.04.016
  3. Schlegel PN. Causes of azoospermia and their management. Reprod Fertil Dev. 2004; 16 (5): 561-72. https://doi.org/10.10371/RD03087
  4. Tiseo BC, Hayden RP, Tanrikut C. Surgical management of nonobstructive azoospermia. Asian Journal of Urology. 2015; 2 (Iss 2): 85–91.
  5. Kumar R. Medical management of non-obstructive azoospermia. Clinics. 2013; 68 (Suppl 1): 75. https://doi.org/10.6061/clinics/2013(Sup01)08
  6. Sadeghi-Nejad H, Farrokhi F. Genetics of azoospermia: current knowledge, clinical implications, and future directions. Part I. Urol J. 2006; 3 (4): 193-203. https://www.ncbi.nlm.nih.gov/pubmed/17559040
  7. Baker K, Sabanegh EJr. Obstructive azoospermia: reconstructive techniques and results. Clinics (Sao Paulo). 2013; 68 (Suppl 1); 61–73. https://www.ncbi.nlm.nih.gov/pmc/articles/3583161
  8. Ramasamy R, Ricci JA, Palermo GD, Gosden LV, Rosenwaks Z, Schlegel PN. Successful fertility treatment for Klinefelter's syndrome. J Urol. 2009; 182 (3): 1108–13. https://doi.org/10.1016/j.juro.2009.05.019
  9. Noordam MJ Westerveld GH, Hovingh SE, van Daalen SK, Korver CM, van der Veen F., van Pelt AM, Repping S. Gene copy number reduction in the azoospermia factor c (AZFc) region and its effect on total motile sperm count. Hum Mol Genet. 2011; 20: 2457–63. https://doi.org/10.1093/hmg/ddr119
  10. Poongothai J, Gopenath TS, Manonayaki S. Genetics of human male infertility. Singapore Med J. 2009; 50 (4): 336-47. https://www.ncbi.nlm.nih.gov/pubmed/19421675
  11. Tirkus MYa. Vnesok genetichnikh chinnikív u strukturu ídíopatichnogo neplíddya cholovíkív Zakhídnogo regíonu Ukraine: Abstr. PhDr. (Biol.). Khark nats Un-t ím. VN Karazína; 2010. 20 s.
  12. Fesay OA, Pampukha VM, Solovyov OO, Lívshits' LA. Molekulyarno-genetichniy analíz defektív gena AZF Y khromosomi ta gena TRBM pri cholovíchomu bezplíddí. Bíopolímeri í klítina. 2008; 24 (3): 231–7.
  13. Chernykh VB, Kurilo LF, Shileyko LV, Shirshova LS, Chukhrova AL, Kovalevskaya TS, Polyakov AV, i dr. Analiz mikrodeletsiy v lokuse AZF u muzhchin s besplodiyem: sovmestnyy opyt issledovaniy. Med genetika. 2003; 2 (8): 367–79.
  14. Lívshits' LA. Priroda, pokhodzhennya ta shlyakhi rozpovsyudzhennya mutatsíy, shcho sprichinyuyut' monogenní spadkoví zakhvoryuvannya: Abstr. Dr. Sci. (Biol.). Ínstitut molekulyarnoí̈ bíologíí̈ í genetiki NAN Ukraine; 2001. 28 s.
  15. Makukh GV. Analíz mutatsíy gena CFTR (TRBM) u khvorikh visokogo riziku mukovístsidozu íz Zakhídnogo regíonu Ukraine: Abstr. PhDr. (Biol.). NAN Ukraine. Ín-t klítin bíologíí̈ ta genet inzheneríí̈; 2001. 16 s.
  16. Veropotvelyan NP, Pogulyay YuS, Zhuravleva SA, Veropotvelyan PN, Kodunov LA. Analiz mikrodeletsiy v lokuse AZF u muzhchin s razlichnymi narusheniyami. Med aspekty zdorov'ya muzhchiny. 2012; 3 (5): 74–7.
  17. Matsumoto AM, Snyder PJ, Bhasin S, Martin K, Weber T, Winters S, Spratt D, Brentzel J, O'Dea L. Stimulation of spermatogenesis with recombinant human follicle-stimulating hormone (follitropin alfa; GONAL-f): long-term treatment in azoospermic men with hypogonadotropic hypogonadism. Fertility and Sterility. 2009; 92 (3): 979–90. https://doi.org/10.1016/j.fertnstert.2008.07.1742
  18. Grigorova M, Punab M, Poolamets O. Increased Prevalance of the -211 T allele of follicle stimulating hormone (FSH) beta subunit promoter polymorphism and lower serum FSH in infertile men. J Clin Endocrinol Metab. 2010; 95: 100. https://doi.org/10.1210/jc.2009-1010
  19. Grigorova M, Punab M, Zilaitienė B, Birutė ilaitienė, Juris Erenpreiss, Kristo Ausmees, Valentinas Matuleviĉius, Igor Tsarev, Niels Jørgensen, Maris Laan. Genetically determined dosage of follicle-stimulating hormone (FSH) affects male reproductive parameters. J Clin Endocrinol Metab. 2011; 96: 1534. https://doi.org/10.1210/jc.2011-0632
  20. Pengo M, Ferlin A, Arredi B, Ganz F, Selice R, Garolla A, Foresta C. FSH receptor gene polymorphisms in fertile and infertile Italian men. Reprod Biomed Online. 2006; 13 (6); 795-800. https://www.ncbi.nlm.nih.gov/pubmed/17169197
  21. Zhylkova I, Feskov O, Fedota O. FSHR Gene polymorphisms causes male infertility. Open J Gen. 2016; 6 (1): 1–8. https://doi.org/10.4236/ojgen.2016.61001
  22. World Health Organization. WHO laboratory manual for the examination and processing of human semen. World Health Organization. 5th ed. Geneva; 2010. 286 p.
  23. Zerova-Lyubimova TE, Gorovenko NG. Standarti analízu preparatív khromosom lyudini (metodichní rekomendatsíí̈). Kií̈vs'ka medichna akademíya píslyadiplomnoí̈ osvíti ím PL Shupika. K.; 2003. 52 s.
  24. Shaffer KG, Slovak ML, Campbell LJ. ISCN 2009. An International System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2009. 138 p.
  25. Atramentova LO, Utevs'ka OM. Statistichní metodi v bíologíí̈: pídruch. dlya studentív bíolog. spets. vishchikh navch. zakladív. Khar'kov; 2007. 286 s.
  26. O’leary MP, Baum NH, Bohnert WW, Blizzard R, Bonney WW, Cooper TP. American Urological Association Gallup survey: Physician practice patterns, cryosurgery/brachytherapy, male infertility, female urology and insurance/professional liability. J Urol. 2004; 171: 2363–8. https://doi.org/10.1097/01.ju.0000127745.26501.5e
  27. Jha CB, Dhungel S, Rai D. Karyotype revealed 47,XXY chromosome (Klinefelter syndrome): a case report. Nepal Med Coll J. 2007; 9 (3): 215-21. https://www.ncbi.nlm.nih.gov/pubmed/18092444
  28. Acton QA. Azoospermia: New Insights for the Healthcare Professional. 2012 Edition on the vast information databases of ScholarlyNews. ScholarlyEditions; 2012. 15 p.
  29. Lindgren I, Giwercaman A, Axellson J, Giwercman Yvonne. Association between follicle-stimulating hormone receptor polymorphisms and reproductive parameters in young men from the general population. Pharmacogenesis and Genomics. 2012; 22 (9): 667-72. https://doi.org/10.1097/FPC.0b013e3283566c42
  30. Behrouz Gharesi-Fard, Zahra Ghasemi, Saeed Shakeri, Shabnam Behdin, Fatemeh Aghaei, Zahra Malek-Hosseini. The frequency of follicle stimulating hormone receptor gene polymorphisms in Iranian infertile men with azoospermia. Iran J Reprod Med. 2015; 13 (11): 673–8. https://www.ncbi.nlm.nih.gov/pmc/articles/4695681
  31. Walker WH, Cheng J. FSH and testosterone signaling in Sertoli cells. Reproduction. 2005; 130: 15–28. https://doi.org/10.1530/rep.1.00358
  32. Foresta C, Bettella A, Spolaore D, Merico M, Rossato M, Ferlin A. Suppression of the high endogenous levels of plasma FSH in infertile men are associated with improved Sertoli cell function as reflected by elevated levels of plasma inhibin B. Hum Reprod. 2004; 19 (6): 1431–7. https://doi.org/10.1093/humrep/deh255
  33. Everaert K, De Croo I, Kerckhaert W, Dekuyper P, Dhont M, Van der Elst J, De Sutter P, Frank Comhaire, Ahmed Mahmoud, Nicolaas Lumen. Long term effects of micro-surgical testicular sperm extraction on androgen status in patients with non obstructive azoospermia. BMC Urol. 2006; 20: 6–9. https://doi.org/10.1186/1471-2490-6-9
  34. Sykiotis GP, Hoang XH, Avbelj M, Hayes FJ, Thambundit A, Dwyer A, Au M, Plummer L, Crowley WF Jr, Pitteloud N. Congenital idiopathic hypogonadotropic hypogonadism: evidence of defects in the hypothalamus, pituitary, and testes. J Clin Endocrinol Metab. 2010; 95 (6): 3019–27. https://doi.org/10.1210/jc.2009-2582
  35. Frühmesser A, Kotzot D. Chromosomal variants in klinefelter syndrome. Sex Dev. 2011; 5 (3): 109-23. https://doi.org/10.1159/000327324.