ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 31 of 59
Up
УЖМБС 2016, 1(1): 144–151
https://doi.org/10.26693/jmbs01.01.144
Biology

Polyadhesins: Anti-Immune Armament of Pathogenic Bacteria

Zav'yalov V.P.
Abstract

The rapid emergence of new and treatment-resistant Gram-negative bacteria (GNB) has become a major threat to public health. The recent outbreak of new Shiga-toxin–producing E. coli O104H4 infection in Germany illustrates this problem. To colonize host tissues, most pathogenic GNB express surface adhesive organelles. The German strain uses aggregative adherence fimbriae I (AAF/I) to anchor to the intestinal mucosa and induce inflammation. AAF/I belong to the discovered by us family of fimbrial polyadhesins. Polyadhesins of pathogenic GNB are functioning as an armament for hijacking, neutralization and misleading of host immune system. Many fimbrial polyadhesins, including AAF/I, are immunoprotective, which makes them attractive vaccine candidates. Previously, our structural studies suggested a new approach to construction of highly soluble monomeric subunits of fimbrial polyadhesins. This approach facilitates design of potential molecular vaccines against several infectious diseases.

Keywords: pathogenic bacteria, polyadhesins, anti-immune armament

Full text: PDF (Rus) 221K

References
  1. Zavyalov VP. Poliadgezinyi patogennyih bakteriy kak oruzhie dlya zahvata, neytralizatsii i dezorientatsii immunnoy sistemyi hozyaina. Prirodnichiy almanah. 2013; 18: 15-24.
  2. Anderson KL, Billington J, Pettigrew D, et al. An atomic resolution model for assembly, architecture, and function of the Dr adhesions. Mol Cell. 2004a; 101: 647–57.
  3. Anderson KL, Cota E, Simpson P, et al. Complete resonance assignments of a 'donor-strand complemented' AfaE: the afimbrial adhesin from diffusely adherent E. coli. Biomol NMR. 2004b; 29: 409–10.
  4. Berry AA, Yang Y, Pakharukova N, James A. Garnett, Wei-chao Lee, Ernesto Cota, Jan Marchant, Saumendra Roy, Minna Tuittila, Bing Liu, Keith G. Inman, Fernando Ruiz-Perez, Inacio Mandomando, Steve Matthews. Structural insight into host recognition by aggregative adherence fimbriae of enteroaggregative Escherichia coli. PLoS Pathog. 2014; 10: e1004404. https://doi.org/10.1371/journal.ppat.1004404
  5. Bork P, Holm L, Sander C. The immunoglobulin fold: structural classification, sequence patterns and common core. J Mol Biol. 1994; 242: 309–20. https://doi.org/10.1006/jmbi.1994.1582
  6. Chapman DAG, Zavialov AV, Chernovskaya TV, et al. Structure and functional significance of the FGL sequence of the periplasmic chaperone, Caf1M, of Yersinia pestis. J Bacteriol. 1999; 181: 2422–9.
  7. Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, Knight SD. X-ray structure of the FimC-FimH chaperone–adhesin complex from uropathogenic Escherichia coli. Science. 1999; 285: 1061–6. https://www.ncbi.nlm.nih.gov/pubmed/10446051
  8. Cornelis GR. The type III secretion injectisome, a complex nanomachine for intracellular 'toxin' delivery. Biol Chem. 2010; 391: 745–51. https://doi.org/10.1515/bc.2010.079
  9. Cornelis GR, Wolf-Watz H. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol. 1997; 23: 861–7. https://www.ncbi.nlm.nih.gov/pubmed/9076724
  10. Cota E, Chen HA, Anderson KL, et al. Letter to the editor: complete resonance assignments of the 'donor-strand complemented' AfaD: the afimbrial invasin from diffusely adherent E. coli. J Biomol NMR. 2004; 29: 411–2. https://doi.org/10.1023/B:JNMR.0000032499.61022.45
  11. Cota E, Jones C, Simpson P, et al. The solution structure of the invasive tip complex from Afa/Dr fibrils. Mol Microbiol. 2006; 62: 356–66. https://doi.org/10.1111/j.1365-2958.2006.05375.x
  12. De Jong B, Ekdahl B. The comparative burden of salmonellosis in the European Union member states, associated and candidate countries. BMC Public Health. 2006; 6: 4. https://doi.org/10.1186/1471-2458-6-4
  13. DeLano WL. Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol. 2002; 12: 14–20. https://www.ncbi.nlm.nih.gov/pubmed/11839484
  14. Di Yu X, Fooks LJ, Moslehi-Mohebi E, Anton Zavialov. Large is fast, small is tight: determinants of speed and affinity in subunit capture by a periplasmic chaperone. J Mol Biol. 2012b; 417: 294–308. https://doi.org/10.1016/j.jmb.2012.01.020
  15. Diepold A, Amstutz M, Abel S, Sorg I, Jenal U, Cornelis GR. Deciphering the assembly of the Yersinia type III secretion injectisome. EMBO J. 2010; 29: 1928–40. https://doi.org/10.1038/emboj.2010.84
  16. Felek S, Tsang TM, Krukonis ES. Three Yersinia pestis adhesins facilitate Yop delivery to eukaryotic cells and contribute to plague virulence. Infect Immun. 2010; 78: 4134–50. https://doi.org/10.1128/IAI.00167-10
  17. Fronzes R, Remaut H, Waksman G. Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J. 2008; 27: 2271–80. https://doi.org/10.1038/emboj.2008.155
  18. Galyov EE, Smirnov OY, Karlyshev AV, et al. Nucleotide sequence of the Yersinia pestis gene encoding F1 antigen and the primary structure of the protein. FEBS Lett. 1990; 277: 230–2. https://doi.org/10.1016/0014-5793(90)80852-A
  19. Galyov EE, Karlyshev AV, Chernovskaya TV, et al. Expression of the envelope antigen F1 of Yersinia pestis is mediated by the product of caf1M gene having homology with the chaperone PapD of Escherichia coli. FEBS Lett. 1991; 286: 79–82. https://doi.org/10.1016/0014-5793(91)80945-Y
  20. Giske CG, Monnet DL, Cars O, Carmeli Y. Clinical and economic impact of common multidrug-resistant Gram-negative bacilli. Antimicrob Agents Ch. 2008; 52: 813–21. https://doi.org/10.1128/AAC.01169-07
  21. Hung DL, Knight SD, Woods RM, et al. Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J. 1996; 15: 3792–805.
  22. Jacob-Dubuisson F, Striker R, Hultgren SJ. Chaperone assisted self-assembly of pili independent of cellular energy. J Biol Chem. 1994; 269: 12447–55. https://www.ncbi.nlm.nih.gov/pubmed/7909802
  23. Jedrzejczak R, Dauter Z, Dauter M, et al. Structure of DraD invasin from uropathogenic Escherichia coli: a dimer with swapped beta-tails. Acta Crystallogr D. 2006; 62: 157–64.https://doi.org/10.1107/S0907444905036747
  24. Karlyshev AV, Galyov EE, Abramov VM, Zav'yalov VP. caf1R gene and its role in the regulation of capsule formation of Y. pestis. FEBS Lett. 1992a; 305: 37–40.
  25. Karlyshev AV, Galyov EE, Smirnov OY, et al. A new gene of the f1 operon of Y. pestis involved in the capsule biogenesis. FEBS Lett. 1992b; 297: 77–80.
  26. Karlyshev AV, EE Galyov, Smirnov OY, et al. Structure and regulation of a gene cluster involved in capsule formation of Y. pestis. Biological Membranes: Structure, Biogenesis and Dynamic, NATO-ASI Serias. NewYork, NY: Springer-Verlag. 1994; H-82(Op den Kamp JAF, ed): p. 321–30.
  27. Knight SD, Berglund J, Choudhury D. Bacterial adhesins: structural studies reveal chaperone function and pilus biogenesis. Curr Opin Chem Biol. 2000; 4: 653–60. https://doi.org/10.1016/S1367-5931(00)00144-7
  28. Korotkova N, Cota E, Lebedin Y, et al. A subfamily of Dr adhesions of Escherichia coli bind independently to decay-accelerating factor and the N-domain of carcinoembrionic antigen. J Biol Chem. 2006a; 281: 29120–30.
  29. Korotkova N, Le Trong I, Samudrala R, et al. Crystal structure and mutational analysis of the DaaE adhesin of Escherichia coli. J Biol Chem. 2006b; 281: 22367–77.
  30. MacIntyre S, Zyrianova IM, Chernovskaya TV, Leonard M, Rudenko EG, Zav'Yalov VP, Chapman DA. An extended hydrophobic interactive surface of Yersinia pestis Caf1M chaperone is essential for subunit binding and F1 capsule assembly. Mol Microbiol. 2001; 39: 12–25. https://www.ncbi.nlm.nih.gov/pubmed/11123684
  31. Pakharukova N, Garnett JA, Tuittila M, Sari Paavilainen, Mamou Diallo, Yingqi Xu, Steve J Matthews, Anton V. Zavialov. Structural insight into archaic and alternative chaperone-usher pathways reveals a novel mechanism of pilus biogenesis. PLoS Pathog. 2015; 11: e1005269. https://doi.org/10.1371/journal.ppat.1005269
  32. Pettigrew D, Anderson KL, Billington J, et al. High resolution studies of the Afa/Dr adhesin DraE and its interaction with chloramphenicol. J Biol Chem. 2004; 279: 46851–7. https://doi.org/10.1074/jbc.M409284200
  33. Phan G, Remaut H, Wang T, Allen William J, Pirke Katharina F r, Lebedev A, Henderson Nadine S, Geibel S, Volkan E, Yan J, Kunze Micha BA, Pinkner Jerome S, et al. Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature. 2011; 474: 49–53. https://doi.org/10.1038/nature10109
  34. Rasko DA, Webster DR, Sahl JW, Ali Bashir, Nadia Boisen, Flemming Scheutz, Ellen E Paxinos, Robert Sebra, Chen-Shan Chin, Dimitris Iliopoulos, Aaron Klammer, et al. Origins of the E. coli strain causing an outbreak of hemolytic–uremic syndrome in Germany. N Engl J Med. 2011; 365: 709–17. https://doi.org/10.1056/NEJMoa1106920
  35. Remaut H, Rose RJ, Hannan TJ, Hultgren SJ, Radford SE, Ashcroft AE, Waksman G. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted β strand displacement mechanism. Mol Cell. 2006; 22: 831–42. https://doi.org/10.1016/j.molcel.2006.05.033
  36. Remaut H, Tang C, Henderson N, Pinkner JS, Wang T, Hultgren SJ, Thanassi DG, Waksman G, Li H. Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell. 2008; 133: 640–52. https://doi.org/10.1016/j.cell.2008.03.033
  37. Roy SP, Rahman MM, Yu XD, Tuittila M, Knight SD, Zavialov AV. Crystal structure of enterotoxigenic Escherichia coli colonization factor CS6 reveals a novel type of functional assembly. Mol Microbiol. 2012 Dec; 86 (5): 1100-15. https://doi.org/10.1111/mmi.12044
  38. Sauer FG, Futterer K, Pinkner JS, Dodson KW, Hultgren SJ, Waksman G. Structural basis of chaperone function and pilus biogenesis. Science. 1999; 285: 1058–61. https://www.ncbi.nlm.nih.gov/pubmed/10446050
  39. Sauer FG, Barnhart M, Choudhury D, et al. Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struc Biol. 2000; 10: 548–56. https://doi.org/10.1016/S0959-440X(00)00129-9
  40. Sauer FG, Pinkner JS, Waksman G, et al. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell. 2002; 111: 543–51.https://doi.org/10.1016/S0092-8674(02)01050-4
  41. Sauer FG, Remaut H, Hultgren SJ, Waksman G. Fiber assembly by the chaperone–usher pathway. Biochim Biophys Acta. 2004; 1694: 259–67. https://doi.org/10.1016/j.bbamcr.2004.02.010
  42. Sharma RK, Sodhi A, Batra HV, et al. Phosphorylation of p42/44 MAP kinase is required for rF1-induced activation of murine peritoneal macrophages. Mol Immunol. 2005; 42: 1385–92. https://doi.org/10.1016/j.molimm.2004.12.016
  43. Soliakov A, Harris JR, Watkinson A, Lakey JH. The structure of Yersinia pestis Caf1 polymer in free and adjuvant bound states. Vaccine. 2010; 28: 5746–54. https://doi.org/10.1016/j.vaccine.2010.05.074
  44. Thanassi DG, Saulino ET, Hultgren SJ. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol. 1998; 1: 223–31. https://www.ncbi.nlm.nih.gov/pubmed/10066482
  45. Velan B, Bar-Haim E, Zauberman A, et al. Discordance in the effects of Yersinia pestis on dendritic cell functions: induction of maturation and paralysis of migration. Infect Immun. 2006; 74: 6365–76.https://doi.org/10.1128/IAI.00974-06
  46. Verger D, Bullitt E, Hultgren SJ, Gabriel Waksman. Crystal structure of the P pilus rod subunit PapA. PLoS Pathogens. 2007; 3: e73. https://doi.org/10.1371/journal.ppat.0030073
  47. Viboud GI, Bliska JB. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Ann Rev Microbio. 2005; 59: 69–89. https://doi.org/10.1146/annurev.micro.59.030804.121320
  48. Waksman G, Hultgren SJ. Structural biology of the chaperone–usher pathway of pilus biogenesis. Nat Rev Microbiol. 2009; 7: 765–74. https://doi.org/10.1038/nrmicro2220
  49. Zavialov AV, Knight SD. A novel self-capping mechanism controls aggregation of periplasmic chaperone Caf1M. Mol Microbiol. 2007; 64: 153–64. https://doi.org/10.1111/j.1365-2958.2007.05644.x
  50. Zavialov A, Zav'yalova G, Korpela T, Zav'yalov V. FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol Rev. 2007; 31: 478–514. https://doi.org/10.1111/j.1574-6976.2007.00075.x
  51. Zavialov AV, Kersley J, Korpela T, Zav'yalov VP, MacIntyre S, Knight SD. Donor strand complementation mechanismin the biogenesis of non-pilus systems. Mol Microbiol. 2002; 45: 983–95. https://www.ncbi.nlm.nih.gov/pubmed/12180918
  52. Zavialov AV, Berglund J, Pudney AF, Fooks LJ, Ibrahim TM, MacIntyre S, Knight SD. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell. 2003; 113: 587–96. https://www.ncbi.nlm.nih.gov/pubmed/12787500
  53. Zavialov AV, Tischenko VM, Fooks LJ, Bjørn O. Brandsdal, Johan Åqvist, Vladimir P. Zav'yalov, Sheila Macintyre, Stefan D. Knight. Resolving the energy paradox of chaperone-mediated fibre assembly. Biochem J. 2005; 389: 685–94. https://doi.org/10.1042/BJ20050426
  54. Zav'yalov VP, Zav'yalova GA, Denesyuk AI, et al. Modelling of steric structure of a periplasmic molecular chaperone Caf1M of Yersinia pestis, a prototype member of a subfamily with characteristic structural and functional features. FEMS Immunol Med Microbiol. 1995; 11: 19–24.https://doi.org/10.1111/j.1574-695X.1995.tb00074.x
  55. Zav'yalov VP, Chernovskaya TV, Chapman DAG, et al. Influence of the conserved disulphide bond exposed to the putative binding pocket, on the structure and function of the immunoglobulin-like periplasmic molecular chaperone, Caf1M, of Yersinia pestis. Biochem J. 1997; 324: 571–8.https://doi.org/10.1042/bj3240571
  56. Zav'yalov V, Zavialov A, Zav'yalova G, et al. Adhesive organelles of Gram negative pathogens assembled with the сlassical сhaperone/usher machinery: structure and function from a clinical standpoint. FEMS Microb Rev. 2010; 34: 317–78. https://doi.org/10.1111/j.1574-6976.2009.00201.x
  57. Zav'yalov V. Fimbrial polyadhesins: anti-immune armament of Yersinia. Adv Exp Med Biol. 2012; 954: 183–201. https://doi.org/10.1007/978-1-4614-3561-7_24
  58. Zav'yalov V. Polyadhesins: an armory of Gram-negative pathogens for penetration through the immune shield. Biotecnologia acta. 2013a; 6: 144–61.
  59. Zav'yalov V. Polyadhesins: an armory of Gram-negative pathogens for penetration through the immune shield. In book: "Biochemistry and Biotechnology for Modern Medicine". Editor S. Komisarenko. Kyiv: Publishing House Moskalenko OM, 2013b. p. 539–585.